Skip to main content

Advertisement

Log in

Anatomic predictors of recurrence after cryoablation for atrial fibrillation: a computed tomography based composite score

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

Effective pulmonary vein isolation (PVI) with cryoablation depends on adequate occlusion of pulmonary veins (PV) by the cryoballoon and is therefore likely to be affected by PV and left atrial (LA) anatomical characteristics and variants. Thus, the objective of this study was to investigate the effect of LA and PV anatomy, evaluated by computed tomography (CT), on acute and long-term outcomes of cryoablation for atrial fibrillation (AF).

Methods

Fifty-eight patients (64.72 + 9.44 years, 60.3% male) undergoing cryoablation for paroxysmal or early persistent AF were included. Pre-procedural CT images were analyzed to evaluate LA dimensions and PV anatomical characteristics. Predictors of recurrence were identified using regression analysis.

Results

60.3% of patients had two PVs on each side with separate ostia, whereas 29.3% and 10.3% had right middle and left common PVs, respectively. The following anatomic characteristics were found to be independent predictors of recurrence: right superior PV ostial max:min diameter ratio > 1.32, left superior PV ostial max:min diameter ratio > 1.2, right superior PV antral circumference > 69.1 mm, right inferior PV antral circumference > 61.38 mm, right superior PV angle > 22.7°. Using these factors, LA diameter and right middle PV, a scoring model was created for prediction of “unfavorable” LA-PV anatomy (AUC = 0.867, p = 0.000009, score range = 0–7). Score of ≥ 4 predicted need for longer cryoenergy ablation (p = 0.039) and more frequent switch to radiofrequency energy (p = 0.066) to achieve PVI, and had a sensitivity of 83.3% and specificity of 82.5% to predict clinical recurrence.

Conclusion

CT-based scoring system is useful to identify “unfavorable” anatomy prior to cryo-PVI, which can result in procedural difficulty and poor outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AF:

Atrial fibrillation

AT:

Atrial tachycardia

CT:

Computed tomography

LA:

Left atrium

PV:

Pulmonary vein

RSPV:

Right superior pulmonary vein

RIPV:

Right inferior pulmonary vein

RMPV:

Right middle pulmonary vein

LSPV:

Left superior pulmonary vein

LIPV:

Left inferior pulmonary vein

LCPV:

Left common pulmonary vein

References

  1. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d’Avila A, de Groot NMS (N), di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: Executive summary, EP Europace, 2–18; 20(1):157–208. https://doi.org/10.1093/europace/eux275.

  2. Haissaguerre M, Jais P, Shah D, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66. https://doi.org/10.1056/NEJM199809033391003.

    Article  CAS  PubMed  Google Scholar 

  3. Pappone C, Rosanio S, Oreto G, Tocchi M, Gugliotta F, Vicedomini G, et al. Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation. 2000;102(21):2619–28. https://doi.org/10.1161/01.CIR.102.21.2619.

    Article  CAS  PubMed  Google Scholar 

  4. Verma A, Jiang C, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372(19):1812–22. https://doi.org/10.1056/NEJMoa1408288.

    Article  PubMed  Google Scholar 

  5. Kuck KH, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KR, et al. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med. 2016;374:2235–45. https://doi.org/10.1056/NEJMoa1602014.

    Article  PubMed  Google Scholar 

  6. Chen J, Yang ZG, Xu HY, Shi K, Long QH, Guo YK. Assessments of pulmonary vein and left atrial anatomical variants in atrial fibrillation patients for catheter ablation with cardiac CT. Eur Radiol. 2017;27(2):660–70. https://doi.org/10.1007/s00330-016-4411-6.

    Article  PubMed  Google Scholar 

  7. Khoueiry Z, Albenque JP, Providencia R, Combes S, Combes N, Jourda F, et al. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: impact of pulmonary veins anatomy. EP Europace. 2016;18(9):1343–51. https://doi.org/10.1093/europace/euv419.

    Article  CAS  Google Scholar 

  8. McLellan AJ, Ling LH, Ruggiero D, et al. Pulmonary vein isolation: the impact of pulmonary venous anatomy on long-term outcome of catheter ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2014;11(4):549–56. https://doi.org/10.1016/j.hrthm.2013.12.025.

    Article  PubMed  Google Scholar 

  9. Sohn C, Sohns JM, Bergau L, et al. Pulmonary vein anatomy predicts freedom from atrial fibrillation using remote magnetic navigation for circumferential pulmonary vein ablation. EP Europace. 2013;15(8):1136–42. https://doi.org/10.1093/europace/eut059.

    Article  Google Scholar 

  10. den Uijl DW, Tops LF, Delgado V, Schuijf JD, Kroft LJM, de Roos A, et al. Effect of pulmonary vein anatomy and left atrial dimensions on outcome of circumferential radiofrequency catheter ablation for atrial fibrillation. Am J Cardiol. 2011;107(2):243–9. https://doi.org/10.1016/j.amjcard.2010.08.069.

    Article  Google Scholar 

  11. Takarada K, Ströker E, Abugattas JP, de Regibus V, Coutiño HE, Lusoc I, et al. Impact of an additional right pulmonary vein on second-generation cryoballoon ablation for atrial fibrillation: a propensity matched score study. J Interv Card Electrophysiol. 2018;54(1):1–8. https://doi.org/10.1007/s10840-018-0373-8.

    Article  PubMed  Google Scholar 

  12. Huang SW, Jin Q, Zhang N, Ling TY, Pan WQ, Lin CJ, et al. Impact of pulmonary vein anatomy on long-term outcome of cryoballoon ablation for atrial fibrillation. Curr Med Sci. 2018;38:259–67. https://doi.org/10.1007/s11596-018-1874-5.

    Article  PubMed  Google Scholar 

  13. Shigeta T, Okishige K, Yamauchi Y, Aoyagi H, Nakamura T, Yamashita M, et al. Clinical assessment of cryoballoon ablation in cases with atrial fibrillation and a left common pulmonary vein. J Cardiovasc Electrophysiol. 2017;28:1021–7. https://doi.org/10.1111/jce.13267.

    Article  PubMed  Google Scholar 

  14. Ströker E, Takarada K, de Asmundis C, Abugattas JP, Mugnai G, Velagić V, et al. Second-generation cryoballoon ablation in the setting of left common pulmonary veins: procedural findings and clinical outcome. Heart Rhythm. 2017;14(9):1311–8. https://doi.org/10.1016/j.hrthm.2017.06.019.

    Article  PubMed  Google Scholar 

  15. Heeger CH, Tscholl V, Wissner E, et al. Acute efficacy, safety, and long-term clinical outcomes using the second-generation cryoballoon for pulmonary vein isolation in patients with a left common pulmonary vein: a multicenter study. Heart Rhythm. 2017;14:111–1118. https://doi.org/10.1002/clc.23163.

    Article  Google Scholar 

  16. Guler E, Guler GB, Demir GG, et al. Effect of pulmonary vein anatomy and pulmonary vein diameters on outcome of cryoballoon catheter ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2015;38:989–96. https://doi.org/10.1111/pace.12660.

    Article  PubMed  Google Scholar 

  17. Tsyganov A, Petru J, Skoda J, Sediva L, Hala P, Weichet J, et al. Anatomical predictors for successful pulmonary vein isolation using balloon-based technologies in atrial fibrillation. J Interv Card Electrophysiol. 2015;44:265–71. https://doi.org/10.1007/s10840-015-0068-3.

    Article  PubMed  Google Scholar 

  18. Knecht S, Kuhne M, Altmann D, et al. Anatomical predictors for acute and mid-term success of cryoballoon ablation of atrial fibrillation using the 28 mm balloon. J Cardiovasc Electrophysiol. 2013;24:132–8. https://doi.org/10.1111/jce.12003.

    Article  PubMed  Google Scholar 

  19. Kubala M, Hermida J, Nadji G, Quenum S, Traulle S, Jarry G. Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein. Pacing Clin Electrophysiol. 2011;34:837–43. https://doi.org/10.1111/j.1540-8159.2011.03070.x.

    Article  PubMed  Google Scholar 

  20. Evranos B, Kocyigit D, Gurses KM, Yalcin MU, Sahiner ML, Kaya EB, et al. Increased left atrial pressure predicts recurrence following successful cryoablation for atrial fibrillation with second-generation cryoballoon. J Interv Card Electrophysiol. 2016;46:145–51. https://doi.org/10.1007/s10840-016-0107-8.

    Article  PubMed  Google Scholar 

  21. Aryana A, Mugnai G, Singh SM, et al. Procedural and biophysical indicators of durable pulmonary vein isolation during cryoballoon ablation of atrial fibrillation. Heart Rhythm. 2016;13(2):424–32. https://doi.org/10.1016/j.hrthm.2015.10.033.

    Article  PubMed  Google Scholar 

  22. Greiss H, Berkowitsch A, Wojcik M, et al. The impact of left atrial surface area and the second generation cryoballoon on clinical outcome of atrial fibrillation cryoablation. Pacing Clin Electrophysiol. 2015;38:815–24. https://doi.org/10.1111/pace.12637.

    Article  PubMed  Google Scholar 

  23. Thorning C, Hamadi M, Liaw JV, et al. CT evaluation of pulmonary venous anatomy variation in patients undergoing catheter ablation for atrial fibrillation. Clin Imaging. 2011;35(1):1–9. https://doi.org/10.1016/j.clinimag.2009.11.005.

    Article  PubMed  Google Scholar 

  24. Ströker E, de Asmundis C, Saitoh Y, Velagić V, Mugnai G, Irfan G, et al. Anatomic predictors of phrenic nerve injury in the setting of pulmonary vein isolation using the 28-mm second-generation cryoballoon. Heart Rhythm. 2016;13(2):342–51. https://doi.org/10.1016/j.hrthm.2015.10.017.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros E. Mountantonakis.

Ethics declarations

Ethical Approval

The study was approved by the Institutional Review Board of our institution.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaishnav, A.S., Alderwish, E., Coleman, K.M. et al. Anatomic predictors of recurrence after cryoablation for atrial fibrillation: a computed tomography based composite score. J Interv Card Electrophysiol 61, 293–302 (2021). https://doi.org/10.1007/s10840-020-00799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-020-00799-7

Keywords

Navigation