Skip to main content
Log in

A contemporary view of atrioventricular nodal physiology

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

In delaying transmission of the cardiac impulse from the atria to the ventricles, the atrioventricular (AV) node serves a critical function in augmenting ventricular filling during diastole and limiting the ventricular response during atrial tachyarrhythmias. The complex structure of the nodal region, however, also provides the substrate for reentrant rhythms. Recent discoveries have elucidated the cellular basis and anatomical determinants of slow conduction in the node. Based on analysis of gap junction proteins, distinct structural components of the AV node have been defined, including the compact node, right and left inferior nodal extensions, the lower nodal bundle, and transitional tissue. Emerging evidence supports the role of the inferior nodal extensions in mediating slow pathway conduction. The most common form of reentry involving the node, slow-fast AV nodal reentrant tachycardia (AVNRT), utilizes the inferior nodal extensions for anterograde slow pathway conduction; the structures responsible for retrograde fast pathway activation in the superior septum are less well defined and likely heterogeneous. Atypical forms of AVNRT arise from circuits that activate at least one of the inferior extensions in the retrograde direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meijler FL, Billette J, Jalife J, Kik MJ, Reiber JH, Stokhof AA, et al. Atrioventricular conduction in mammalian species: hemodynamic and electrical scaling. Heart Rhythm. 2005;2:188–96.

    Article  PubMed  Google Scholar 

  2. George SA, Faye NR, Murillo-Berlioz A, Lee KB, Trachiotis GD, Efimov IR. At the atrioventricular crossroads: dual pathway electrophysiology in the atrioventricular node and its underlying heterogeneities. Arrhythm Electrophysiol Rev. 2017;6:179–85.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kurian T, Ambrosi C, Hucker W, Fedorov VV, Efimov IR. Anatomy and electrophysiology of the human AV node. Pacing Clin Electrophysiol. 2010;33:754–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hucker WJ, McCain ML, Laughner JI, Iaizzo PA, Efimov IR. Connexin 43 expression delineates two discrete pathways in the human atrioventricular junction. Anat Rec. 2008;291:204–15.

    Article  Google Scholar 

  5. Anderson RH, Latham RA. The cellular architecture of the human atrioventricular node, with a note on its morphology in the presence of a left superior vena cava. J Anat. 1971;109:443–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Inoue S, Becker AE. Posterior extensions of the human compact atrioventricular node: a neglected anatomic feature of potential clinical significance. Circulation. 1998;97:188–93.

    Article  PubMed  CAS  Google Scholar 

  7. Temple IP, Inada S, Dobrzynski H, Boyett MR. Connexins and the atrioventricular node. Heart Rhythm. 2013;10:297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Munk AA, Adjemian RA, Zhao J, Ogbaghebriel A, Shrier A. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J Physiol. 1996;493(Pt 3):801–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Anderson RH, Janse MJ, van Capelle FJ, Billette J, Becker AE, Durrer D. A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circ Res. 1974;35:909–22.

    Article  PubMed  CAS  Google Scholar 

  10. Kim D, Shinohara T, Joung B, Maruyama M, Choi EK, On YK, et al. Calcium dynamics and the mechanisms of atrioventricular junctional rhythm. J Am Coll Cardiol. 2010;56:805–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhang Y, Mazgalev TN. AV nodal dual pathway electrophysiology and Wenckebach periodicity. J Cardiovasc Electrophysiol. 2011;22:1256–62.

    Article  PubMed  Google Scholar 

  12. Petrecca K, Shrier A. Spatial distribution of nerve processes and beta-adrenoreceptors in the rat atrioventricular node. J Anat. 1998;192(Pt 4):517–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Crick SJ, Anderson RH, Ho SY, Sheppard MN. Localisation and quantitation of autonomic innervation in the porcine heart II: endocardium, myocardium and epicardium. J Anat. 1999;195(Pt 3):359–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Crick SJ, Wharton J, Sheppard MN, Royston D, Yacoub MH, Anderson RH, et al. Innervation of the human cardiac conduction system. A quantitative immunohistochemical and histochemical study. Circulation. 1994;89:1697–708.

    Article  PubMed  CAS  Google Scholar 

  15. Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D. Control of heart rate by cAMP sensitivity of HCN channels. Proc Natl Acad Sci U S A. 2009;106:12189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fedorov VV, Ambrosi CM, Kostecki G, Hucker WJ, Glukhov AV, Wuskell JP, et al. Anatomic localization and autonomic modulation of atrioventricular junctional rhythm in failing human hearts. Circ Arrhythm Electrophysiol. 2011;4:515–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lerman BB, Belardinelli L. Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation. 1991;83:1499–509.

    Article  PubMed  CAS  Google Scholar 

  18. Workman AJ, Kane KA, Rankin AC. Ionic basis of a differential effect of adenosine on refractoriness in rabbit AV nodal and atrial isolated myocytes. Cardiovasc Res. 1999;43:974–84.

    Article  PubMed  CAS  Google Scholar 

  19. Belardinelli L, Shryock JC, Song Y, Wang D, Srinivas M. Ionic basis of the electrophysiological actions of adenosine on cardiomyocytes. FASEB J. 1995;9:359–65.

    Article  PubMed  CAS  Google Scholar 

  20. Curtis AB, Belardinelli L, Woodard DA, Brown CS, Conti JB. Induction of atrioventricular node reentrant tachycardia with adenosine: differential effect of adenosine on fast and slow atrioventricular node pathways. J Am Coll Cardiol. 1997;30:1778–84.

    Article  PubMed  CAS  Google Scholar 

  21. Chen YJ, Chen SA, Chiang CE, Tai CT, Lee SH, Chiou CW, et al. Dual AV node pathway physiology in patients with Wolff-Parkinson-white syndrome. Int J Cardiol. 1996;56:275–81.

    Article  PubMed  CAS  Google Scholar 

  22. Lockwood DJ, Nakagawa H, Jackman WM. Electrophysiological characteristics of atrioventricular nodal reentrant tachycardia: implications for the reentrant circuits. In: Zipes DP, Jalife J, Stevenson WG, editors. Cardiac electrophysiology: from cell to bedside. 7th ed. Philadelphia: Elsevier; 2017. p. 746–67.

    Google Scholar 

  23. Sheahan RG, Klein GJ, Yee R, Le Feuvre CA, Krahn AD. Atrioventricular node reentry with ‘smooth’ AV node function curves: a different arrhythmia substrate? Circulation. 1996;93:969–72.

    Article  PubMed  CAS  Google Scholar 

  24. Medkour D, Becker AE, Khalife K, Billette J. Anatomic and functional characteristics of a slow posterior AV nodal pathway: role in dual-pathway physiology and reentry. Circulation. 1998;98:164–74.

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Greener ID, Inada S, Nikolski VP, Yamamoto M, Hancox JC, et al. Computer three-dimensional reconstruction of the atrioventricular node. Circ Res. 2008;102:975–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gamache MC, Bharati S, Lev M, Lindsay BD. Histopathological study following catheter guided radiofrequency current ablation of the slow pathway in a patient with atrioventricular nodal reentrant tachycardia. Pacing Clin Electrophysiol. 1994;17:247–51.

    Article  PubMed  CAS  Google Scholar 

  27. Sanchez-Quintana D, Davies DW, Ho SY, Oslizlok P, Anderson RH. Architecture of the atrial musculature in and around the triangle of Koch: its potential relevance to atrioventricular nodal reentry. J Cardiovasc Electrophysiol. 1997;8:1396–407.

    Article  PubMed  CAS  Google Scholar 

  28. Inoue S, Becker AE, Riccardi R, Gaita F. Interruption of the inferior extension of the compact atrioventricular node underlies successful radio frequency ablation of atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol. 1999;3:273–7.

    Article  PubMed  CAS  Google Scholar 

  29. Markowitz SM, Stein KM, Lerman BB. Mechanism of ventricular rate control after radiofrequency modification of atrioventricular conduction in patients with atrial fibrillation. Circulation. 1996;94:2856–64.

    Article  PubMed  CAS  Google Scholar 

  30. Stein KM, Lerman BB. Evidence for functionally distinct dual atrial inputs to the human AV node. Am J Phys. 1994;267:H2333–41.

    CAS  Google Scholar 

  31. Blanck Z, Dhala AA, Sra J, Deshpande SS, Anderson AJ, Akhtar M, et al. Characterization of atrioventricular nodal behavior and ventricular response during atrial fibrillation before and after a selective slow-pathway ablation. Circulation. 1995;91:1086–94.

    Article  PubMed  CAS  Google Scholar 

  32. Shaw RM, Rudy Y. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res. 1997;81:727–41.

    Article  PubMed  CAS  Google Scholar 

  33. Engelstein ED, Stein KM, Markowitz SM, Lerman BB. Posterior fast atrioventricular node pathways: implications for radiofrequency catheter ablation of atrioventricular node reentrant tachycardia. J Am Coll Cardiol. 1996;27:1098–105.

    Article  PubMed  CAS  Google Scholar 

  34. Katritsis DG, Ellenbogen KA, Becker AE. Atrial activation during atrioventricular nodal reentrant tachycardia: studies on retrograde fast pathway conduction. Heart Rhythm. 2006;3:993–1000.

    Article  PubMed  Google Scholar 

  35. Otomo K, Nagata Y, Taniguchi H, Uno K, Fujiwara H, Iesaka Y. Superior type of atypical AV nodal reentrant tachycardia: incidence, characteristics, and effect of slow pathway ablation. Pacing Clin Electrophysiol. 2008;31:998–1009.

    Article  PubMed  Google Scholar 

  36. Katritsis DG, Josephson ME. Classification, electrophysiological features and therapy of atrioventricular nodal reentrant tachycardia. Arrhythm Electrophysiol Rev. 2016;5:130–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chua K, Upadhyay GA, Lee E, Aziz Z, Beaser AD, Ozcan C, et al. High-resolution mapping of the triangle of Koch: spatial heterogeneity of fast pathway atrionodal connections. Heart Rhythm. 2018;15:421–9.

    Article  PubMed  Google Scholar 

  38. Gonzalez MD, Contreras LJ, Cardona F, Klugewicz CJ, Conti JB, Curtis AB, et al. Demonstration of a left atrial input to the atrioventricular node in humans. Circulation. 2002;106:2930–4.

    Article  PubMed  Google Scholar 

  39. Katritsis DG, Becker AE, Ellenbogen KA, Giazitzoglou E, Korovesis S, Camm AJ. Effect of slow pathway ablation in atrioventricular nodal reentrant tachycardia on the electrophysiologic characteristics of the inferior atrial inputs to the human atrioventricular node. Am J Cardiol. 2006;97:860–5.

    Article  PubMed  Google Scholar 

  40. Ross DL, Johnson DC, Denniss AR, Cooper MJ, Richards DA, Uther JB. Curative surgery for atrioventricular junctional (“AV nodal”) reentrant tachycardia. J Am Coll Cardiol. 1985;6:1383–92.

    Article  PubMed  CAS  Google Scholar 

  41. Gomes JA, Dhatt MS, Rubenson DS, Damato AN. Electrophysiologic evidence for selective retrograde utilization of a specialized conducting system in atrioventricular nodal reentrant tachycardia. Am J Cardiol. 1979;43:687–98.

    Article  PubMed  CAS  Google Scholar 

  42. Stellbrink C, Diem B, Schauerte P, Brehmer K, Schuett H, Hanrath P. Differential effects of atropine and isoproterenol on inducibility of atrioventricular nodal reentrant tachycardia. J Interv Card Electrophysiol. 2001;5:463–9.

    Article  PubMed  CAS  Google Scholar 

  43. Chiou CW, Chen SA, Kung MH, Chang MS, Prystowsky EN. Effects of continuous enhanced vagal tone on dual atrioventricular node and accessory pathways. Circulation. 2003;107:2583–8.

    Article  PubMed  Google Scholar 

  44. Katritsis DG, Becker A. The atrioventricular nodal reentrant tachycardia circuit: a proposal. Heart Rhythm. 2007;4:1354–60.

    Article  PubMed  Google Scholar 

  45. Katritsis DG, John RM, Latchamsetty R, Muthalaly RG, Zografos T, Katritsis GD, et al. Left septal slow pathway ablation for atrioventricular nodal reentrant tachycardia. Circ Arrhythm Electrophysiol. 2018;11:e005907.

    Article  PubMed  Google Scholar 

  46. Katritsis DG, Sepahpour A, Marine JE, Katritsis GD, Tanawuttiwat T, Calkins H, et al. Atypical atrioventricular nodal reentrant tachycardia: prevalence, electrophysiologic characteristics, and tachycardia circuit. Europace. 2015;17:1099–106.

    Article  PubMed  Google Scholar 

  47. Otomo K, Okamura H, Noda T, Satomi K, Shimizu W, Suyama K, et al. “Left-variant” atypical atrioventricular nodal reentrant tachycardia: electrophysiological characteristics and effect of slow pathway ablation within coronary sinus. J Cardiovasc Electrophysiol. 2006;17:1177–83.

    Article  PubMed  Google Scholar 

  48. Kilic A, Amasyali B, Kose S, Aytemir K, Celik T, Kursaklioglu H, et al. Atrioventricular nodal reentrant tachycardia ablated from left atrial septum: clinical and electrophysiological characteristics and long-term follow-up results as compared to conventional right-sided ablation. Int Heart J. 2005;46:1023–31.

    Article  PubMed  Google Scholar 

  49. Katritsis DG, Giazitzoglou E, Zografos T, Ellenbogen KA, Camm AJ. An approach to left septal slow pathway ablation. J Interv Card Electrophysiol. 2011;30:73–9.

    Article  PubMed  Google Scholar 

  50. Hwang C, Martin DJ, Goodman JS, Gang ES, Mandel WJ, Swerdlow CD, et al. Atypical atrioventricular node reciprocating tachycardia masquerading as tachycardia using a left-sided accessory pathway. J Am Coll Cardiol. 1997;30:218–25.

    Article  PubMed  CAS  Google Scholar 

  51. Otomo K, Nagata Y, Uno K, Fujiwara H, Iesaka Y. Atypical atrioventricular nodal reentrant tachycardia with eccentric coronary sinus activation: electrophysiological characteristics and essential effects of left-sided ablation inside the coronary sinus. Heart Rhythm. 2007;4:421–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Markowitz.

Ethics declarations

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markowitz, S.M., Lerman, B.B. A contemporary view of atrioventricular nodal physiology. J Interv Card Electrophysiol 52, 271–279 (2018). https://doi.org/10.1007/s10840-018-0392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-018-0392-5

Keywords

Navigation