Skip to main content

Advertisement

Log in

Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Introduction

Mesenchymal stem cells (MSCs) have been associated with reduced arrhythmias; however, the mechanism of this action is unknown. In addition, limited retention and survival of MSCs can significantly reduce efficacy. We hypothesized that MSCs can improve impulse conduction and that alginate hydrogel will enhance retention of MSCs in a model of healed myocardial infarction (MI).

Methods and results

Four weeks after temporary occlusion of the left anterior descending artery (LAD), pigs (n = 13) underwent a sternotomy to access the infarct and then were divided into two studies. In study 1, designed to investigate impulse conduction, animals were administered, by border zone injection, 9–15 million MSCs (n = 7) or phosphate-buffered saline (PBS) (control MI, n = 5). Electrogram width measured in the border zone 2 weeks after injections was significantly decreased with MSCs (−30 ± 8 ms, p < 0.008) but not in shams (4 ± 10 ms, p = NS). Optical mapping from border zone tissue demonstrated that conduction velocity was higher in regions with MSCs (0.49 ± 0.03 m/s) compared to regions without MSCs (0.39 ± 0.03 m/s, p < 0.03). In study 2, designed to investigate MSC retention, animals were administered an equal number of MSCs suspended in either alginate (2 or 1 % w/v) or PBS (n = 6/group) by border zone injection. Greater MSC retention and survival were observed with 2 % alginate compared to PBS or 1 % alginate. Confocal immunofluorescence demonstrated that MSCs survive and are associated with expression of connexin-43 (Cx43) for either PBS (control), 1 %, or 2 % alginate.

Conclusions

For the first time, we are able to directly associate MSCs with improved impulse conduction and increased retention and survival using an alginate scaffold in a clinically relevant model of healed MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.

    Article  PubMed  Google Scholar 

  2. Korf-Klingebiel, M., Kempf, T., Sauer, T., Brinkmann, E., Fischer, P., Meyer, G. P., et al. (2008). Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. European Heart Journal, 29(23), 2851–2858.

    Article  PubMed  Google Scholar 

  3. Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Wang, D., Zhang, F., Shen, W., Chen, M., Yang, B., Zhang, Y., et al. (2011). Mesenchymal stem cell injection ameliorates the inducibility of ventricular arrhythmias after myocardial infarction in rats. International Journal of Cardiology, 152(3), 314–320.

    Article  PubMed  Google Scholar 

  5. Song, H., Hwang, H. J., Chang, W., Song, B. W., Cha, M. J., Kim, I. K., et al. (2011). Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 296–301.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Trachtenberg, B., Velazquez, D. L., Williams, A. R., McNiece, I., Fishman, J., Nguyen, K., et al. (2011). Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy [randomized controlled trial]. American Heart Journal, 161(3), 487–493.

    Article  PubMed  CAS  Google Scholar 

  7. Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54(24), 2277–2286.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Williams, A. R., Trachtenberg, B., Velazquez, D. L., McNiece, I., Altman, P., Rouy, D., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling [clinical trial, phase I]. Circulation Research, 108(7), 792–796.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Heldman, A. W., DiFede, D. L., Fishman, J. E., Zambrano, J. P., Trachtenberg, B. H., Karantalis, V., et al. (2014). Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial [Clinical trial, phase I clinical trial, phase II randomized controlled trial research support, N.I.H., extramural research support, non-U.S. Gov't]. JAMA : The Journal of the American Medical Association, 311(1), 62–73.

    Article  CAS  Google Scholar 

  10. Mills, W. R., Mal, N., Kiedrowski, M. J., Unger, R., Forudi, F., Popovic, Z. B., et al. (2007). Stem cell therapy enhances electrical viability in myocardial infarction. Journal of Molecular and Cellular Cardiology, 42(2), 304–314.

    Article  PubMed  CAS  Google Scholar 

  11. Costa, A. R., Panda, N. C., Yong, S., Mayorga, M. E., Pawlowski, G. P., Fan, K., et al. (2012). Optical mapping of cryoinjured rat myocardium grafted with mesenchymal stem cells. American Journal of Physiology - Heart and Circulatory Physiology, 302(1), H270–H277.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Cai, B., Wang, G., Chen, N., Liu, Y., Yin, K., Ning, C., et al. (2014). Bone marrow mesenchymal stem cells protected post-infarcted myocardium against arrhythmias via reversing potassium channels remodelling. Journal of cellular and molecular medicine.

  13. Askar, S. F., Ramkisoensing, A. A., Atsma, D. E., Schalij, M. J., de Vries, A. A., & Pijnappels, D. A. (2013). Engraftment patterns of human adult mesenchymal stem cells expose electrotonic and paracrine proarrhythmic mechanisms in myocardial cell cultures [comparative study research support, non-U.S. Gov’t]. Circulation. Arrhythmia and electrophysiology, 6(2), 380–391.

    Article  PubMed  Google Scholar 

  14. Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y., Cysyk, J., Dong, P., et al. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113(15), 1832–1841.

    Article  PubMed  Google Scholar 

  15. Rustad, K. C., Wong, V. W., Sorkin, M., Glotzbach, J. P., Major, M. R., Rajadas, J., et al. (2012). Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials, 33(1), 80–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Suuronen, E. J., Kuraitis, D., & Ruel, M. (2008). Improving cell engraftment with tissue engineering. Seminars in Thoracic and Cardiovascular Surgery, 20(2), 110–114.

    Article  PubMed  Google Scholar 

  17. Seif-Naraghi, S. B., Singelyn, J. M., Salvatore, M. A., Osborn, K. G., Wang, J. J., Sampat, U., et al. (2013). Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Science Translational Medicine, 5(173), 173ra125.

    Article  Google Scholar 

  18. Ifkovits, J. L., Tous, E., Minakawa, M., Morita, M., Robb, J. D., Koomalsingh, K. J., et al. (2010). Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11507–11512.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Sun, J., Li, S. H., Liu, S. M., Wu, J., Weisel, R. D., Zhuo, Y. F., et al. (2009). Improvement in cardiac function after bone marrow cell therapy is associated with an increase in myocardial inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 296(1), H43–H50.

    Article  PubMed  CAS  Google Scholar 

  20. Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913–922.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Alsberg, E., Kong, H. J., Hirano, Y., Smith, M. K., Albeiruti, A., & Mooney, D. J. (2003). Regulating bone formation via controlled scaffold degradation. Journal of Dental Research, 82(11), 903–908.

    Article  PubMed  CAS  Google Scholar 

  22. Mills, W. R., Mal, N., Forudi, F., Popovic, Z. B., Penn, M. S., & Laurita, K. R. (2006). Optical mapping of late myocardial infarction in rats. American Journal of Physiology - Heart and Circulatory Physiology, 290(3), H1298–H1306.

    Article  PubMed  CAS  Google Scholar 

  23. Fouts, K., Fernandes, B., Mal, N., Liu, J., & Laurita, K. R. (2006). Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium. Heart Rhythm, 3(4), 452–461.

    Article  PubMed  Google Scholar 

  24. Akar, F. G., Yan, G. X., Antzelevitch, C., & Rosenbaum, D. S. (2002). Unique topographical distribution of M cells underlies reentrant mechanism of torsade de pointes in the long-QT syndrome. Circulation, 105(10), 1247–1253.

    Article  PubMed  Google Scholar 

  25. Potapova, I., Plotnikov, A., Lu, Z., Danilo, P. J., Valiunas, V., Qu, J., et al. (2004). Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circulation Research, 94(7), 952–959.

    Article  PubMed  CAS  Google Scholar 

  26. Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824.

    Article  PubMed  CAS  Google Scholar 

  27. Rubart, M., Pasumarthi, K. B., Nakajima, H., Soonpaa, M. H., Nakajima, H. O., & Field, L. J. (2003). Physiological coupling of donor and host cardiomyocytes after cellular transplantation. Circulation Research, 92(11), 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  28. Pijnappels, D. A., Schalij, M. J., van Tuyn, J., Ypey, D. L., de Vries, A. A., van der Wall, E. E., et al. (2006). Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovascular Research, 72(2), 282–291.

    Article  PubMed  CAS  Google Scholar 

  29. Suncion, V. Y., Ghersin, E., Fishman, J. E., Zambrano, J. P., Karantalis, V., Mandel, N., et al. (2014). Does transendocardial injection of mesenchymal stem cells improve myocardial function locally or globally?: An analysis from the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis (POSEIDON) randomized trial. Circulation Research, 114(8), 1292–1301.

    Article  PubMed  CAS  Google Scholar 

  30. Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. Journal of Clinical Investigation, 103(5), 697–705.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Rota, M., Kajstura, J., Hosoda, T., Bearzi, C., Vitale, S., Esposito, G., et al. (2007). Bone marrow cells adopt the cardiomyogenic fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104(45), 17783–17788.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.

    Article  PubMed  Google Scholar 

  34. Beeres, S. L., Atsma, D. E., van der Laarse, A., Pijnappels, D. A., van Tuyn, J., Fibbe, W. E., et al. (2005). Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. Journal of the American College of Cardiology, 46(10), 1943–1952.

    Article  PubMed  Google Scholar 

  35. Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112(2), 214–223.

    Article  PubMed  Google Scholar 

  36. Rose, R. A., Jiang, H., Wang, X., Helke, S., Tsoporis, J. N., Gong, N., et al. (2008). Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 26(11), 2884–2892.

    Article  PubMed  CAS  Google Scholar 

  37. Haider, H. K. H., Jiang, S., Idris, N. M., & Ashraf, M. (2008). IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circulation Research, 103(11), 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  38. Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9(9), 1195–1201.

    Article  PubMed  CAS  Google Scholar 

  39. Pedrotty, D. M., Klinger, R. Y., Badie, N., Hinds, S., Kardashian, A., & Bursac, N. (2008). Structural coupling of cardiomyocytes and noncardiomyocytes: quantitative comparisons using a novel micropatterned cell pair assay. American Journal of Physiology - Heart and Circulatory Physiology, 295(1), H390–H400.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Valiunas, V., Doronin, S., Valiuniene, L., Potapova, I., Zuckerman, J., Walcott, B., et al. (2004). Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. The Journal of Physiology, 555(Pt 3), 617–626.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3(4), e1886.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fukushima, S., Varela-Carver, A., Coppen, S. R., Yamahara, K., Felkin, L. E., Lee, J., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115(17), 2254–2261.

    Article  PubMed  Google Scholar 

  43. Visage, C. L., Gournay, O., Benguirat, N., Hamidi, S., Chaussumier, L., Mougenot, N., et al. (2012). Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Engineering. Part A, 18(1–2), 35–44.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alsberg, E., Anderson, K. W., Albeiruti, A., Franceschi, R. T., & Mooney, D. J. (2001). Cell-interactive alginate hydrogels for bone tissue engineering. Journal of Dental Research, 80(11), 2025–2029.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by NIH Grant RC1HL100105 (KRL).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Laurita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, N.C., Zuckerman, S.T., Mesubi, O.O. et al. Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel. J Interv Card Electrophysiol 41, 117–127 (2014). https://doi.org/10.1007/s10840-014-9940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-014-9940-9

Keywords

Navigation