Skip to main content

Advertisement

Log in

First experience with a novel robotic remote catheter system: Amigo™ mapping trial

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Introduction

Amigo™ (Catheter Robotics, Inc., Mount Olive, NJ) remote catheter system (RCS) was designed to provide a simple and relatively inexpensive system for remote catheter manipulation. The purpose of this study was to evaluate the performance and safety of Amigo in mapping the right side of the heart.

Methods and results

This non-randomized, prospective clinical trial was conducted at 13 sites (NCT: #01139814). Using the controller, a mapping catheter was moved to eight pre-specified locations in a specific sequence: right ventricular apex, mid-right ventricular septum, right ventricular outflow tract, His-bundle position, coronary sinus ostium, high right atrium, lateral tricuspid annulus, and low lateral right atrium. The pre-specified efficacy endpoint was to achieve 80 % successful navigation to all locations. Time to each location, location accuracy, and quality of contact were confirmed by imaging and specific criteria for electrograms and pacing thresholds. In 181 patients, a total of 1,396 of 1,448 (96 %) locations were successfully mapped with all protocol criteria met (one-sided p value < 0.0001). The median time to move the catheter to a new location was 24 s. The Amigo-related major complication rate was 0 % which was significantly less than the predefined endpoint of 4 % (one-sided p = 0.003).

Conclusion

We found the Amigo RCS to be safe and effective for positioning a mapping catheter at sites within the right atrium and ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. FDA. (2010). Initiative to reduce unnecessary radiation exposure from medical imaging. Silver Spring, MD: FDA.

    Google Scholar 

  2. Katz, J. (2005). Radiation exposure to anesthesia personnel: the impact of an electrophysiology laboratory. Anesthesia and Analgesia, 101, 1725–1726.

    Article  PubMed  Google Scholar 

  3. Kim, K. P., Miller, D. L., Balter, S., Kleinerman, R. A., Linet, M. S., Kwon, D., et al. (2008). Occupational radiation doses to operators performing cardiac catheterization procedures. Health Physics, 93(3), 211–227.

    Article  Google Scholar 

  4. Koening, T. R., Wolf, D., Mettler, F. A., & Wagner, L. K. (2001). Skin injuries from fluoroscopically guided procedures. American Journal of Roentgenology, 177, 3–11.

    Article  Google Scholar 

  5. Roguin, A., Goldstein, J., & Bar, O. (2012). Brain malignancies and ionising radiation: more cases reported. EuroIntervention, 8(1), 169–170.

    Article  PubMed  Google Scholar 

  6. The Joint Commission (2011). Radiation risks of diagnostic imaging.

  7. Ellis, B. (2012). The cost of a living. Cardiology Today Intervention, May/June.

  8. Hughes, N., Nelson, A., Matz, M., & Lloyd, J. (2011). Solutions for prolonged standing in perioperative settings. AORN Journal, 93, 767–774.

    Article  PubMed  Google Scholar 

  9. Klein, L. W., Miller, D. L., Balter, S., Laskey, W., Haines, D., Norbash, A., et al. (2009). Occupational health hazards in the interventional laboratory: time for a safer environment. Journal of Vascular and Interventional Radiology, 20, 147–153.

    Article  PubMed  Google Scholar 

  10. Bai, R., Di Biase, L., Valderrabano, M., Lorgat, F., Mlcochova, H., Tilz, R., et al. (2012). Worldwide experience with the robotic navigation system in catheter ablation of atrial fibrillation: methodology, efficacy and safety. Journal of Cardiovascular Electrophysiology, 23(8), 820–826.

    Article  PubMed  Google Scholar 

  11. Greenberg, S., Blume, W., Faddis, M., Finney, J., Hall, A., Talcott, M., et al. (2006). Remote controlled magnetically guided pulmonary vein isolation in canines. Heart Rhythm, 3, 71–76.

    Article  PubMed  Google Scholar 

  12. Kanagaratnam, P., Koa-Wing, M., Wallace, D. T., Goldenberg, A. S., Peters, N. S., & Davies, D. W. (2008). Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath. Journal of Interventional Cardiac Electrophysiology, 21, 19–26.

    Article  PubMed  Google Scholar 

  13. Pappone, C., Vicedomini, G., Manguso, F., Gugliotta, F., Mazzone, P., Gulletta, S., et al. (2006). Robotic magnetic navigation for atrial fibrillation ablation. Journal of the American College of Cardiology, 47(7), 1390–1400.

    Article  PubMed  Google Scholar 

  14. Reddy, V. Y., Neuzil, P., Malchano, Z. J., Vijaykumar, R., Cury, R., Abbara, S., et al. (2007). View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility. Circulation, 115(21), 2705–2714.

    Article  PubMed  Google Scholar 

  15. Schmidt, B., Chun, K.R., Tilz, R., Koektuerk, B., Ouyang, F., Kuck, K.H. (2008). Remote navigation systems in electrophysiology. Europace, 10:iii57–iii61.

    Google Scholar 

  16. Schmidt, B., Tilz, R., Neven, K., Chun, K. J., Furnkranz, A., & Ouyang, F. (2009). Remote robotic navigation and electroanatomical mapping for ablation of atrial fibrillation. Circulation Arrhythmia and Electrophysiology, 2(2), 120–128.

    Article  PubMed  Google Scholar 

  17. Wazni, O., Barrett, C., Martin, D. O., Shaheen, M., Tarakji, K., Baranowski, B., et al. (2009). Experience with the Hansen robotic system for atrial fibrillation ablation—lessons learned and techniques modified: Hansen in the real world. Journal of Cardiovascular Electrophysiology, 20(11), 1193–1196.

    Article  PubMed  Google Scholar 

  18. FDA. (1999). Guidance for industry and for FDA reviewers: recommended clinical study design for ventricular tachycardia ablation (Appendix A). Silver Spring, MD: FDA. May.

    Google Scholar 

  19. Henderson, N. O. (1988). The statistical analysis of graft patency data in a clinical trial of antiplatelet agents following coronary artery bypass grafting. Controlled Clinical Trials, 9, 189–205.

    Article  PubMed  CAS  Google Scholar 

  20. De Ponti, R., Marazzi, R., Doni, L. A., Tamborini, C., Ghiringhelli, S., & Salerno-Uriarte, J. A. (2012). Simulator training reduces radiation exposure and improves trainees’ performance in placing electrophysiologic catheters during patient-based procedures. Heart Rhythm, 9, 1280–1285.

    Article  PubMed  Google Scholar 

  21. Faddis, M. N., Chen, J., Osborn, J., Talcott, M., Cain, M., & Lindsay, B. D. (2003). Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. Journal of the American College of Cardiology, 42(11), 1952–1958.

    Article  PubMed  Google Scholar 

  22. Khaykin, Y., Oosthuizen, R., Zarnett, L., Wulffhart, Z. A., Whaley, B., Hill, C., et al. (2001). CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. Journal of Interventional Cardiac Electrophysiology, 30, 233–240.

    Article  Google Scholar 

  23. Ferguson, J. D., Helms, A., Mangrum, M., Mahaptra, S., Mason, P., Bilchick, K., et al. (2009). Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circulation Arrhythmia and Electrophysiology, 2(6), 611–619.

    Article  PubMed  Google Scholar 

  24. Scaglione, M., Biasco, L., Caponi, D., Anselmino, M., Negro, A., Di Donna, P., et al. (2011). Visualization of multiple catheters with electroanatomical mapping reduces X-ray exposure during atrial fibrillation ablation. Europace, 13(7), 955–962.

    Article  PubMed  Google Scholar 

  25. Reddy, V. Y., Shah, D., Kautzner, J., Schmidt, B., Saoudi, N., Herrera, C., et al. (2012). The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm, 9(11), 1789–1795.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ejaz M. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, E.M., Frumkin, W., Ng, G.A. et al. First experience with a novel robotic remote catheter system: Amigo™ mapping trial. J Interv Card Electrophysiol 37, 121–129 (2013). https://doi.org/10.1007/s10840-013-9791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-013-9791-9

Keywords

Navigation