Skip to main content

Advertisement

Log in

SiO2 based conductive bridging random access memory

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

We present a review on the subject of Conductive Bridging Random Access Memory (CBRAM) based on copper- or silver-doped silicon dioxide. CBRAM is a promising type of resistive non-volatile memory which relies on metal ion transport and redox reactions to form a persistent conducting filament in a high resistance film. This effect may be reversed to return the device to a high resistance state. Such control over resistance can be used to represent digital information (e.g., high =0, low =1) or produce multiple discrete or even continuous analog values as required by advanced storage and computing concepts. Many materials have been used in CBRAM devices but we concentrate in this paper on silicon dioxide as the ion conducting layer. The primary benefits of this approach lie with the CMOS process compatibility and the ubiquity of this material in integrated circuits which greatly lower the barrier for widespread usage and permit integration of memory with silicon-based devices. Our discussion covers materials and electrochemical theory, including the role of counter charge in these devices, as well as the current understanding of the nature of the filament growth. Theory of operation is supported by descriptions of physical and electrical analyses of devices, including in-situ microscopy and impedance spectroscopy. We also provide insight into memory arrays and other advanced applications, particularly in neuromorphic computing. The radiation tolerance of these devices is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. E. Grochowski, R.D. Halem, Technological impact of magnetic hard disk drives on storage systems. IBM Syst. J. 42, 338–346 (2003)

    Article  Google Scholar 

  2. P. Desnoyers, Empirical evaluation of NAND flash memory performance. ACM SIGOPS Oper. Syst. Rev. 44, 50–54 (2010)

    Article  Google Scholar 

  3. L. Crippa, R. Micheloni, 3D Charge Trap NAND Flash Memories, in 3D Flash Memories, ed: Springer, 2016, pp. 85–127.

  4. Y. Gonzalez-Velo, H. J. Barnaby, M. N. Kozicki, C. Gopalan, and K. Holbert, Total ionizing dose retention capability of conductive bridging random access memory. Electron Device Lett., IEEE, vol. 35, pp. 205–207, 2014.

  5. J. Simmons, R. Verderber, New thin-film resistive memory. Radio Electron. Eng. 34, 81–89 (1967)

    Article  Google Scholar 

  6. G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970)

    Article  Google Scholar 

  7. D. Oxley, Electroforming, switching and memory effects in oxide thin films. Act. Passive Electron. Compon. 3, 217–224 (1977)

    Google Scholar 

  8. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  9. I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011)

    Article  Google Scholar 

  10. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  11. H. Pagnia, N. Sotnik, Bistable switching in electroformed metal–insulator–metal devices. Phys. Status Solidi (a) 108, 11–65 (1988)

    Article  Google Scholar 

  12. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  Google Scholar 

  13. A. Beck, J. Bednorz, C. Gerber, C. Rossel, D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77, 139–141 (2000)

    Article  Google Scholar 

  14. D. Ielmini, C. Cagli, F. Nardi, Resistance transition in metal oxides induced by electronic threshold switching. Appl. Phys. Lett. 94, 063511 (2009)

    Article  Google Scholar 

  15. S. Yu, X. Guan, H.-S.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model. Appl. Phys. Lett. 99, 063507 (2011)

    Article  Google Scholar 

  16. R. Fang, W. Chen, L. Gao, W. Yu, S. Yu, Low-temperature characteristics of HfO x-based resistive random access memory. IEEE Electron. Device Lett. 36, 567–569 (2015)

    Article  Google Scholar 

  17. L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X. Wang, R. Degraeve, et al., Evidences of oxygen-mediated resistive-switching mechanism in TiN\ HfO2\ Pt cells. Appl. Phys. Lett. 97, 243509 (2010)

    Article  Google Scholar 

  18. M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5− x/TaO2− x bilayer structures. Nat. Mater. 10, 625–630 (2011)

    Article  Google Scholar 

  19. Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, et al., Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. in 2008 I.E. International Electron Devices Meeting, 2008, pp. 1–4.

  20. R.J. Kamaladasa, A.A. Sharma, Y.-T. Lai, W. Chen, P.A. Salvador, J.A. Bain, et al., In situ TEM imaging of defect dynamics under electrical bias in resistive switching rutile-TiO 2. Microsc. Microanal. 21, 140–153 (2015)

    Article  Google Scholar 

  21. J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Article  Google Scholar 

  22. M. Kubicek, R. Schmitt, F. Messerschmitt, J.L. Rupp, Uncovering two competing switching mechanisms for epitaxial and ultrathin strontium Titanate-based resistive switching bits. ACS Nano 9, 10737–10748 (2015)

    Article  Google Scholar 

  23. F. Messerschmitt, M. Kubicek, S. Schweiger, J.L. Rupp, Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3-δ bits: the memristor-based Cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7448–7460 (2014)

    Article  Google Scholar 

  24. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  Google Scholar 

  25. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  Google Scholar 

  26. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012)

    Article  Google Scholar 

  27. M. N. Kozicki, M. Mitkova, and I. Valov, Electrochemical metallization memories, Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, pp. 483–514, 2016.

  28. I. Valov and W. D. Lu, Nanoscale electrochemistry using dielectric thin films as solid electrolytes. Nanoscale, 2016.

  29. C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, et al., Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process. Solid State Electron. 58, 54–61 (2011)

    Article  Google Scholar 

  30. J. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan, et al., Conductive-bridge memory (CBRAM) with excellent high-temperature retention. in 2013 I.E. International Electron Devices Meeting, IEDM 2013, 2013.

  31. G. Raghavan, C. Chiang, P.B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, et al., Diffusion of copper through dielectric films under bias temperature stress. Thin Solid Films 262, 168–176 (1995)

    Article  Google Scholar 

  32. M. Mitkova, M. Kozicki, Silver incorporation in Ge–Se glasses used in programmable metallization cell devices. J. Non-Cryst. Solids 299, 1023–1027 (2002)

    Article  Google Scholar 

  33. M. N. Kozicki, C. Gopalan, M. Balakrishnan, M. Park, M. Mitkova, Nonvolatile memory based on solid electrolytes, in Non-Volatile Memory Technology Symposium, 2004, 2004, pp. 10–17.

  34. C. Schindler, M. Meier, R. Waser, M. Kozicki, Resistive switching in Ag-Ge-Se with extremely low write currents, in Non-Volatile Memory Technology Symposium, 2007. NVMTS'07, 2007, pp. 82–85.

  35. M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, et al., Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20 nm, in IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest., 2005.

  36. M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state electrolytes. IEEE Trans. Nanotechnol. 4, 331–338 (2005)

    Article  Google Scholar 

  37. N.E. Gilbert, M.N. Kozicki, An embeddable multilevel-cell solid electrolyte memory array. IEE J. Solid-State Circuits 42, 1383–1391 (2007)

    Article  Google Scholar 

  38. R. Symanczyk, M. Balakrishnan, C. Gopalan, T. Happ, M. Kozicki, M. Kund, et al., Electrical C aracteri < ation of solid state 8onic memory elements, 2003

    Google Scholar 

  39. M.N. Kozicki, M. Mitkova, Mass transport in chalcogenide electrolyte films–materials and applications. J. Non-Cryst. Solids 352, 567–577 (2006)

    Article  Google Scholar 

  40. M. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Information storage using nanoscale electrodeposition of metal in solid electrolytes. Superlattice. Microst. 34, 459–465 (2003)

    Article  Google Scholar 

  41. M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, M. Mitkova, Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes, in Symposium Non-Volatile Memory Technology 2005., 2005, pp. 7–89.

  42. R. Symanczyk, R. Bruchhaus, M. Kund, Investigation of the reliability behavior of conductive-bridging memory cells. IEEE Electron Device Lett. 30, 876–878 (2009)

    Article  Google Scholar 

  43. D. Kamalanathan, U. Russo, D. Ielmini, M.N. Kozicki, Voltage-driven on–off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30, 553–555 (2009)

    Article  Google Scholar 

  44. R. Bruchhaus, M. Honal, R. Symanczyk, M. Kund, Selection of optimized materials for CBRAM based on HT-XRD and electrical test results. J. Electrochem. Soc. 156, H729–H733 (2009)

    Article  Google Scholar 

  45. U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory. IEEE Trans. Electron Devices 56, 1040–1047 (2009)

    Article  Google Scholar 

  46. M. Balakrishnan, M. Kozicki, C. Gopalan, and M. Mitkova, Germanium sulfide-based solid electrolytes for non-volatile memory, in 63rd Device Research Conference, DRC'05, (2005)

    Google Scholar 

  47. D. Kamalanathan, S. Baliga, S. C. P. Thermadam, M. Kozicki, ON state stability of programmable metalization cell (PMC) memory, in Non-Volatile Memory Technology Symposium, 2007. NVMTS'07 (2007), pp. 91–96

  48. C.-J. Kim, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee, et al., Characterization of silver-saturated Ge-Te chalcogenide thin films for nonvolatile random access memory. J. Vac. Sci. Technol. B 24, 721–724 (2006)

    Article  Google Scholar 

  49. R. Pandian, B.J. Kooi, G. Palasantzas, J.T. De Hosson, A. Pauza, Polarity-dependent reversible resistance switching in Ge–Sb–Te phase-change thin films. Appl. Phys. Lett. 91, 152103 (2007)

    Article  Google Scholar 

  50. I. Stratan, D. Tsiulyanu, I. Eisele, A programmable metallization cell based on Ag-As2S3. J. Optoelectron. Adv. Mater. 8, 2117–2119 (2006)

    Google Scholar 

  51. P. Van Der Sluis, Non-volatile memory cells based on ZnxCd1-xS ferroelectric Schottky diodes. Appl. Phys. Lett. 82, 4089–4091 (2003)

    Article  Google Scholar 

  52. S.P. Thermadam, S. Bhagat, T. Alford, Y. Sakaguchi, M. Kozicki, M. Mitkova, Influence of Cu diffusion conditions on the switching of Cu–SiO 2-based resistive memory devices. Thin Solid Films 518, 3293–3298 (2010)

    Article  Google Scholar 

  53. S. Tappertzhofen, H. Mündelein, I. Valov, R. Waser, Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale 4, 3040–3043 (2012)

    Article  Google Scholar 

  54. C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO 2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)

    Article  Google Scholar 

  55. W. Chen, R. Fang, M.B. Balaban, W. Yu, Y. Gonzalez-Velo, H.J. Barnaby, et al., A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology 27, 255202 (2016)

    Article  Google Scholar 

  56. M. Balakrishnan, S. C. P. Thermadam, M. Mitkova, M. N. Kozicki, A low power non-volatile memory element based on copper in deposited silicon oxide, in 2006 7th Annual Non-Volatile Memory Technology Symposium (2006), pp. 104–110

  57. W. Chen, H. Barnaby, M. Kozicki, Impedance spectroscopy of programmable metallization cells with a thin SiO 2 switching layer. IEEE Electron Device Lett. 37, 576–579 (2016)

    Article  Google Scholar 

  58. S. Tappertzhofen, S. Menzel, I. Valov, R. Waser, Redox processes in silicon dioxide thin films using copper microelectrodes. Appl. Phys. Lett. 99, 203103 (2011)

    Article  Google Scholar 

  59. S. Manhart, Memory switching in SiO films with Ag and Co electrodes. J. Phys. D. Appl. Phys. 6, 82 (1973)

    Article  Google Scholar 

  60. T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Temperature effects on the switching kinetics of a Cu–Ta2O5-based atomic switch. Nanotechnology 22, 254013 (2011)

    Article  Google Scholar 

  61. T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, Electronic transport in Ta2O5 resistive switch. Appl. Phys. Lett. 91, 092110 (2007)

    Article  Google Scholar 

  62. Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, M. Aono, Off-state and turn-on characteristics of solid electrolyte switch. Appl. Phys. Lett. 96, 023504 (2010)

    Article  Google Scholar 

  63. T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, et al., A Ta 2 O 5 solid-electrolyte switch with improved reliability, in 2007 I.E. Symposium on VLSI Technology (2007), pp. 38–39.

  64. N. Banno, T. Sakamoto, S. Fujieda, M. Aono, On-state reliability of solid-electrolyte switch, in 2008 I.E. International Reliability Physics Symposium (2008), pp. 707–708.

  65. C. Gopalan, M. Kozicki, S. Bhagat, S.P. Thermadam, T. Alford, M. Mitkova, Structure of copper-doped tungsten oxide films for solid-state memory. J. Non-Cryst. Solids 353, 1844–1848 (2007)

    Article  Google Scholar 

  66. Y. Li, S. Long, Q. Liu, Q. Wang, M. Zhang, H. Lv, et al., Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures. Phys. Status Solidi (RRL)-Rapid Res. Lett. 4, 124–126 (2010)

    Article  Google Scholar 

  67. M.N. Kozicki, C. Gopalan, M. Balakrishnan, M. Mitkova, A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotechnol. 5, 535–544 (2006)

    Article  Google Scholar 

  68. L. Goux, K. Sankaran, G. Kar, N. Jossart, K. Opsomer, R. Degraeve, et al., Field-driven ultrafast sub-ns programming in WAl 2 O 3 TiCuTe-based 1T1R CBRAM system, in VLSI Technology (VLSIT), 2012 Symposium on (2012), pp. 69–70.

  69. A. Belmonte, W. Kim, B. Chan, N. Heylen, A. Fantini, M. Houssa, et al., 90 nm WAl 2 O 3 TiWCu 1T1R CBRAM cell showing low-power, fast and disturb-free operation, in 2013 5th IEEE International Memory Workshop (2013), pp. 26–29.

  70. A. Belmonte, W. Kim, B.T. Chan, N. Heylen, A. Fantini, M. Houssa, et al., A thermally stable and high-performance 90-nm-based 1T1R CBRAM cell. IEEE Trans. Electron Devices 60, 3690–3695 (2013)

    Article  Google Scholar 

  71. L. Goux, K. Opsomer, R. Degraeve, R. Müller, C. Detavernier, D. Wouters, et al., Influence of the Cu-Te composition and microstructure on the resistive switching of Cu-Te/Al2O3/Si cells. Appl. Phys. Lett. 99, 053502 (2011)

    Article  Google Scholar 

  72. J. Guy, G. Molas, E. Vianello, F. Longnos, S. Blanc, C. Carabasse, et al., Investigation of the physical mechanisms governing data-retention in down to 10 nm nano-trench Al 2 O 3/CuTeGe conductive bridge RAM (CBRAM), in 2013 I.E. International Electron Devices Meeting (2013), pp. 30.2. 1–30.2. 4

  73. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, et al., A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389–395 (2011)

    Article  Google Scholar 

  74. H.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, et al., Phase change memory. Proc. IEEE 98, 2201–2227 (2010)

    Article  Google Scholar 

  75. K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, et al., A novel resistance memory with high scalability and nanosecond switching, in 2007 I.E. International Electron Devices Meeting (2007), pp. 783–786.

  76. K. Abe, M. P. Tendulkar, J. R. Jameson, P. B. Griffin, K. Nomura, S. Fujita, et al., Ultra-high bandwidth memory with 3D–stacked emerging memory cells, in 2008 I.E. International Conference on Integrated Circuit Design and Technology and Tutorial (2008), pp. 203–206.

  77. S. Rahaman, S. Maikap, Improved resistive switching memory characteristics using novel bi-layered Ge 0.2 Se 0.8/Ta 2 O 5 solid-electrolytes, in 2010 I.E. International Memory Workshop (2010), pp. 1–4.

  78. J. Yi, S.-W. Kim, Y. Nishi, Y.-T. Hwang, S.-W. Chung, S.-J. Hong, et al., Research on switching property of an oxide/copper sulfide hybrid memory, in Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual (2008), pp. 1–4.

  79. R. Soni, M. Meier, A. Rüdiger, B. Holländer, C. Kügeler, R. Waser, Integration of “GexSe 1− x” in crossbar arrays for non-volatile memory applications. Microelectron. Eng. 86, 1054–1056 (2009)

    Article  Google Scholar 

  80. M.N. Kozicki, H.J. Barnaby, Conductive bridging random access memory—materials, devices and applications. Semicond. Sci. Technol. 31, 113001 (2016)

    Article  Google Scholar 

  81. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, et al., Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401–2406 (2014)

    Article  Google Scholar 

  82. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  Google Scholar 

  83. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, et al., Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)

    Article  Google Scholar 

  84. M. Kudo, M. Arita, Y. Ohno, Y. Takahashi, Filament formation and erasure in molybdenum oxide during resistive switching cycles. Appl. Phys. Lett. 105, 173504 (2014)

    Article  Google Scholar 

  85. W.A. Hubbard, A. Kerelsky, G. Jasmin, E. White, J. Lodico, M. Mecklenburg, et al., Nanofilament formation and regeneration during Cu/Al2O3 resistive memory switching. Nano Lett. 15, 3983–3987 (2015)

    Article  Google Scholar 

  86. S. Tappertzhofen, I. Valov, T. Tsuruoka, T. Hasegawa, R. Waser, M. Aono, Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7, 6396–6402 (2013)

    Article  Google Scholar 

  87. W. Chen, H. J. Barnaby, M. N. Kozicki, A. Edwards, Y. Gonzalez-Velo, R. Fang, et al., A study of gamma-ray exposure of Cu–SiO programmable metallization cells (2015)

  88. J. van den Hurk, A.-C. Dippel, D.-Y. Cho, J. Straquadine, U. Breuer, P. Walter, et al., Physical origins and suppression of Ag dissolution in GeS x-based ECM cells. Phys. Chem. Chem. Phys. 16, 18217–18225 (2014)

    Article  Google Scholar 

  89. C. Schindler, I. Valov, R. Waser, Faradaic currents during electroforming of resistively switching Ag–Ge–Se type electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 11, 5974–5979 (2009)

    Article  Google Scholar 

  90. J.D. McBrayer, R. Swanson, T. Sigmon, Diffusion of metals in silicon dioxide. J. Electrochem. Soc. 133, 1242–1246 (1986)

    Article  Google Scholar 

  91. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility ofáthin-film memristors. Appl. Phys. A 94, 515–519 (2009)

    Article  Google Scholar 

  92. S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25, 6306–6325 (2015)

    Article  Google Scholar 

  93. C. Schindler, M. Weides, M. Kozicki, R. Waser, Low current resistive switching in Cu-SiO 2 cells. Appl. Phys. Lett. 92 (2008).

  94. A. J. Bard, R. Parsons, J. Jordan, Standard potentials in aqueous solution vol. 6: CRC press, 1985.

  95. D.-Y. Cho, S. Tappertzhofen, R. Waser, I. Valov, Bond nature of active metal ions in SiO 2-based electrochemical metallization memory cells. Nanoscale 5, 1781–1784 (2013)

    Article  Google Scholar 

  96. A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York (1980)

  97. S. Tappertzhofen, R. Waser, I. Valov, New insights into redox based resistive switches, in Non-Volatile Memory Technology Symposium (NVMTS), 2013 13th, 2013, pp. 1–5

  98. T. Tsuruoka, I. Valov, S. Tappertzhofen, J. Van Den Hurk, T. Hasegawa, R. Waser, et al., Redox reactions at Cu, Ag/Ta2O5 interfaces and the effects of Ta2O5 film density on the forming process in atomic switch structures. Adv. Funct. Mater. 25, 6374–6381 (2015)

    Article  Google Scholar 

  99. C. Schindler, G. Staikov, R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells: overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 2109 (2009)

    Article  Google Scholar 

  100. T. Tsuruoka, K. Terabe, T. Hasegawa, I. Valov, R. Waser, M. Aono, Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2012)

    Article  Google Scholar 

  101. N. Knorr, R. Wirtz, S. Rosselli, G. Nelles, Field-absorbed water induced electrochemical processes in organic thin film junctions. J. Phys. Chem. C 114, 15791–15796 (2010)

    Article  Google Scholar 

  102. S. Tappertzhofen, M. Hempel, I. Valov, R. Waser, Proton mobility in SiO 2 thin films and impact of hydrogen and humidity on the resistive switching effect, in MRS Proceedings (2011), pp. mrss11-1330-j01-02-k03-02.

  103. T. Tsuruoka, I. Valov, C. Mannequin, T. Hasegawa, R. Waser, M. Aono, Humidity effects on the redox reactions and ionic transport in a Cu/Ta2O5/Pt atomic switch structure. Jpn. J. Appl. Phys. 55, 06GJ09 (2016)

    Article  Google Scholar 

  104. S. Tappertzhofen, R. Waser, I. Valov, Impact of the counter-electrode material on redox processes in resistive switching memories. ChemElectroChem 1, 1287–1292 (2014)

    Article  Google Scholar 

  105. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. Van den Hurk, F. Lentz, et al., Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Article  Google Scholar 

  106. X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off mechanism in Ag + migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007)

    Article  Google Scholar 

  107. H. Sun, Q. Liu, C. Li, S. Long, H. Lv, C. Bi, et al., Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Funct. Mater. 24, 5679–5686 (2014)

    Article  Google Scholar 

  108. W. Yu, Fractal properties and applications of dendritic filaments in programmable metallization cells, Arizona State University (2015)

  109. Z. Xu, Y. Bando, W. Wang, X. Bai, D. Golberg, Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)

    Article  Google Scholar 

  110. Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, et al., Electrochemical dynamics of nanoscale metallic inclusions in dielectrics, Nat. Commun., 5 (2014)

  111. J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400–407 (2007)

    Article  Google Scholar 

  112. C.-S. Yang, D.-S. Shang, Y.-S. Chai, L.-Q. Yan, B.-G. Shen, Y. Sun, Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys. Chem. Chem. Phys. 18, 12466–12475 (2016)

    Article  Google Scholar 

  113. F. Messerschmitt, M. Kubicek, J.L. Rupp, How does moisture affect the physical property of Memristance for anionic–electronic resistive switching memories? Adv. Funct. Mater. 25, 5117–5125 (2015)

    Article  Google Scholar 

  114. G. Di Martino, S. Tappertzhofen, S. Hofmann, J. Baumberg, Nanoscale Plasmon-enhanced spectroscopy in memristive switches, Small, (2016)

  115. J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. Second Edition, 1–26 (2005)

  116. J. R. Macdonald, W. B. Johnson, Fundamentals of impedance spectroscopy, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition, pp. 1–26, (2005)

  117. Y. Liu, P. Gao, X. Jiang, K. Bi, H. Xu, W. Peng, Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon. Appl. Phys. Lett. 104, 043502 (2014)

    Article  Google Scholar 

  118. D. Mahalanabis, Y. Gonzalez-Velo, H.J. Barnaby, M.N. Kozicki, P. Dandamudi, S. Vrudhula, Impedance measurement and characterization of Ag-Ge 30 Se 70-based programmable metallization cells. Electron Devices, IEEE Transactions on 61, 3723–3730 (2014)

    Article  Google Scholar 

  119. D.S. Jeong, H. Schroeder, R. Waser, Impedance spectroscopy of TiO2 thin films showing resistive switching. Appl. Phys. Lett. 89, 82909–83100 (2006)

    Article  Google Scholar 

  120. W.M. Merrill, R.E. Diaz, M.M. LoRe, M.C. Squires, N.G. Alexopoulos, Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum. IEEE Trans. Antennas Propag. 47, 142–148 (1999)

    Article  Google Scholar 

  121. A. Chung, J. Deen, J.-S. Lee, M. Meyyappan, Nanoscale memory devices. Nanotechnology 21, 412001 (2010)

    Article  Google Scholar 

  122. D.J. Wouters, R. Waser, M. Wuttig, Phase-change and redox-based resistive switching memories. Proc. IEEE 103, 1274 (2015)

    Article  Google Scholar 

  123. E. Linn, R. Rosezin, C. Kügeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010)

    Article  Google Scholar 

  124. S. Menzel, S. Tappertzhofen, R. Waser, I. Valov, Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15, 6945–6952 (2013)

    Article  Google Scholar 

  125. M.D. Pickett, R.S. Williams, Sub-100 f. and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)

    Article  Google Scholar 

  126. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory. Proc. IEEE 91, 489–502 (2003)

    Article  Google Scholar 

  127. Y. Fujisaki, Current status of nonvolatile semiconductor memory technology. Jpn. J. Appl. Phys. 49, 100001 (2010)

    Article  Google Scholar 

  128. E. Linn, R. Rosezin, S. Tappertzhofen, R. Waser, Beyond von Neumann? Logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23, 305205 (2012)

    Article  Google Scholar 

  129. S. Menzel, U. Böttger, R. Waser, Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 111, 014501 (2012)

    Article  Google Scholar 

  130. S. Tappertzhofen, E. Linn, S. Menzel, A.J. Kenyon, R. Waser, I. Valov, Modeling of quantized conductance effects in electrochemical metallization cells. IEEE Trans. Nanotechnol. 14, 505–512 (2015)

    Article  Google Scholar 

  131. D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101, 2498–2533 (2013)

    Article  Google Scholar 

  132. J. Åkerman, Toward a universal memory. Science 308, 508–510 (2005)

    Article  Google Scholar 

  133. T. Vogelsang, Understanding the energy consumption of dynamic random access memories, in Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture (2010), pp. 363–374

  134. ITRS. Edition 2013, (2013)

  135. K. Wang, J. Alzate, P.K. Amiri, Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D. Appl. Phys. 46, 074003 (2013)

    Article  Google Scholar 

  136. B. Rooseleer and W. Dehaene, A 40 nm, 454 MHz 114 fJ/bit area-efficient SRAM memory with integrated charge pump, in ESSCIRC (ESSCIRC), 2013 Proceedings of the, 2013, pp. 201–204

  137. D. Ielmini, Filamentary-switching model in RRAM for time, energy and scaling projections, in Electron Devices Meeting (IEDM), 2011 I.E. International (2011), pp. 17.2. 1–17.2. 4

  138. A. Belmonte, U. Celano, R. Degraeve, A. Fantini, A. Redolfi, W. Vandervorst, et al., Operating-current dependence of the Cu-mobility requirements in oxide-based conductive-bridge RAM. IEEE Electron Device Lett. 36, 775–777 (2015)

    Article  Google Scholar 

  139. I. Valov, G. Staikov, Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J. Solid State Electrochem. 17, 365–371 (2013)

    Article  Google Scholar 

  140. M. Morales-Masis, S. Van Der Molen, T. Hasegawa, J. Van Ruitenbeek, Bulk and surface nucleation processes in Ag 2 S conductance switches. Phys. Rev. B 84, 115310 (2011)

    Article  Google Scholar 

  141. Y. Bernard, P. Gonon, V. Jousseaume, Resistance switching of Cu/SiO2 memory cells studied under voltage and current-driven modes. Appl. Phys. Lett. 96, 3502 (2010)

    Article  Google Scholar 

  142. U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory. Electron Devices, IEEE Trans. 56, 1040–1047 (2009)

    Article  Google Scholar 

  143. A. Nayak, T. Tsuruoka, K. Terabe, T. Hasegawa, M. Aono, Switching kinetics of a Cu2S-based gap-type atomic switch. Nanotechnology 22, 235201 (2011)

    Article  Google Scholar 

  144. A. Nayak, T. Tamura, T. Tsuruoka, K. Terabe, S. Hosaka, T. Hasegawa, et al., Rate-limiting processes determining the switching time in a Ag2S atomic switch. J. Phys. Chem. Lett. 1, 604–608 (2010)

    Article  Google Scholar 

  145. I. Valov, I. Sapezanskaia, A. Nayak, T. Tsuruoka, T. Bredow, T. Hasegawa, et al., Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat. Mater. 11, 530–535 (2012)

    Article  Google Scholar 

  146. S. Tappertzhofen, I. Valov, R. Waser, Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23, 145703 (2012)

    Article  Google Scholar 

  147. J. van den Hurk, V. Havel, E. Linn, R. Waser, I. Valov, Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/Nanoelectronic logic and memory architectures. Sci. Rep. 3 (2013).

  148. T. Tsuruoka, T. Hasegawa, I. Valov, R. Waser, M. Aono, Rate-limiting processes in the fast SET operation of a gapless-type Cu-Ta2O5 atomic switch. AIP Adv. 3, 032114 (2013)

    Article  Google Scholar 

  149. M. Meier, C. Schindler, S. Gilles, R. Rosezin, A. Rudiger, C. Kugeler, et al., A nonvolatile memory with resistively switching methyl-silsesquioxane. IEEE Electron Device Lett. 30, 8–10 (2009)

    Article  Google Scholar 

  150. S. Nandakumar, M. Minvielle, S. Nagar, C. Dubourdieu, B. Rajendran, A 250 mV Cu/SiO2/W memristor with half-integer quantum conductance states. Nano Lett. 16, 1602–1608 (2016)

    Article  Google Scholar 

  151. A. Calderoni, S. Sills, C. Cardon, E. Faraoni, N. Ramaswamy, Engineering ReRAM for high-density applications. Microelectron. Eng. 147, 145–150 (2015)

    Article  Google Scholar 

  152. J. Krans, C. Muller, I. Yanson, T.C. Govaert, R. Hesper, J. Van Ruitenbeek, One-atom point contacts. Phys. Rev. B 48, 14721 (1993)

    Article  Google Scholar 

  153. S.J. Choi, G.S. Park, K.H. Kim, S. Cho, W.Y. Yang, X.S. Li, et al., In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272–3277 (2011)

    Article  Google Scholar 

  154. A. Belmonte, U. Celano, A. Redolfi, A. Fantini, R. Muller, W. Vandervorst, et al., Analysis of the excellent memory disturb characteristics of a hourglass-shaped filament in Al 2 O 3/Cu-based CBRAM devices. IEEE Trans. Electron Devices 62, 2007–2013 (2015)

    Article  Google Scholar 

  155. S. Gao, C. Chen, Z. Zhai, H. Liu, Y. Lin, S. Li, et al., Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories. Appl. Phys. Lett. 105, 063504 (2014)

    Article  Google Scholar 

  156. P. Cappelletti, A. Modelli, Flash memory reliability, in Flash Memories, ed: Springer (1999), pp. 399–441.

  157. J. Woo, A. Belmonte, A. Redolfi, H. Hwang, M. Jurczak, L. Goux, Role of local chemical potential of Cu on data retention properties of Cu-based conductive-bridge RAM. IEEE Electron Device Lett. 37, 173–175 (2016)

    Article  Google Scholar 

  158. K. Sankaran, L. Goux, S. Clima, M. Mees, J.A. Kittl, M. Jurczak, et al., Modeling of copper diffusion in amorphous aluminum oxide in CBRAM memory stack. ECS Trans. 45, 317–330 (2012)

    Article  Google Scholar 

  159. S. Tappertzhofen, E. Linn, U. Böttger, R. Waser, I. Valov, Nanobattery effect in RRAMs—implications on device stability and endurance. IEEE Electron Device Lett. 35, 208–210 (2014)

    Article  Google Scholar 

  160. G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, et al., Controlling oxygen vacancies in doped oxide based CBRAM for improved memory performances, in 2014 I.E. International Electron Devices Meeting (2014), pp. 6.1. 1–6.1. 4

  161. M. Barci, J. Guy, G. Molas, E. Vianello, A. Toffoli, J. Cluzel, et al., Impact of SET and RESET conditions on CBRAM high temperature data retention, in 2014 I.E. International Reliability Physics Symposium (2014), pp. 5E. 3.1-5E. 3.4

  162. J. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan, et al., Conductive-bridge memory (CBRAM) with excellent high-temperature retention, in 2013 I.E. International Electron Devices Meeting (2013)

  163. S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, et al., A copper ReRAM cell for storage class memory applications, in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on (2014), pp. 1–2

  164. Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, C. Tao, Coexistence of diode-like volatile and multilevel nonvolatile resistive switching in a ZrO2/TiO2 stack structure. Nanotechnology 26, 391001 (2015)

    Article  Google Scholar 

  165. T. Hino, T. Hasegawa, H. Tanaka, T. Tsuruoka, K. Terabe, T. Ogawa, et al., Volatile and nonvolatile selective switching of a photo-assisted initialized atomic switch. Nanotechnology 24, 384006 (2013)

    Article  Google Scholar 

  166. T. Liu, M. Verma, Y. Kang, M. Orlowski, Volatile resistive switching in Cu/TaOx/δ-Cu/Pt devices. Appl. Phys. Lett. 101, 073510 (2012)

    Article  Google Scholar 

  167. J. Song, J. Woo, A. Prakash, D. Lee, H. Hwang, Threshold selector with high selectivity and steep slope for cross-point memory array (2016)

  168. J. Van den Hurk, E. Linn, H. Zhang, R. Waser, I. Valov, Volatile resistance states in electrochemical metallization cells enabling non-destructive readout of complementary resistive switches. Nanotechnology 25, 425202 (2014)

    Article  Google Scholar 

  169. R. Yang, K. Terabe, Y. Yao, T. Tsuruoka, T. Hasegawa, J.K. Gimzewski, et al., Synaptic plasticity and memory functions achieved in a WO3− x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology 24, 384003 (2013)

    Article  Google Scholar 

  170. Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017)

    Article  Google Scholar 

  171. W. Chen, H. Barnaby, M. Kozicki, Volatile and non-volatile switching in Cu-SiO 2 programmable metallization cells. IEEE Electron Device Lett. 37, 580–583 (2016)

    Article  Google Scholar 

  172. Y.M. Lu, M. Noman, W. Chen, P.A. Salvador, J.A. Bain, M. Skowronski, Elimination of high transient currents and electrode damage during electroformation of TiO2-based resistive switching devices. J. Phys. D. Appl. Phys. 45, 395101 (2012)

    Article  Google Scholar 

  173. D. Gilmer, G. Bersuker, H.-Y. Park, C. Park, B. Butcher, W. Wang, et al., Effects of RRAM stack configuration on forming voltage and current overshoot, in 2011 3rd IEEE International Memory Workshop (IMW) (2011), pp. 1–4

  174. H. Wan, P. Zhou, L. Ye, Y. Lin, T. Tang, H. Wu, et al., In situ observation of compliance-current overshoot and its effect on resistive switching. IEEE Electron Device Lett. 31, 246–248 (2010)

    Article  Google Scholar 

  175. K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, et al., Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 3506 (2008)

    Article  Google Scholar 

  176. Y. Sato, K. Tsunoda, K. Kinoshita, H. Noshiro, M. Aoki, Y. Sugiyama, Sub-reset current of nickel oxide resistive memory through control of filamentary conductance by current limit of MOSFET. IEEE Trans. Electron Devices 55, 1185–1191 (2008)

    Article  Google Scholar 

  177. D. Kamalanathan, A. Akhavan, M. Kozicki, Low voltage cycling of programmable metallization cell memory devices. Nanotechnology 22, 254017 (2011)

    Article  Google Scholar 

  178. S. Dietrich, M. Angerbauer, M. Ivanov, D. GOG, H. Hoenigschmid, M. Kund, et al., A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J. Solid State Circuits 42, 839–845 (2007)

    Article  Google Scholar 

  179. S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, et al., A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. Solid State Circuits 40, 168–176 (2005)

    Article  Google Scholar 

  180. L. Goux, K. Opsomer, A. Franquet, G. Kar, N. Jossart, O. Richard, et al., Thermal-stability optimization of Al 2 O 3/Cu–Te based conductive-bridging random access memory systems. Thin Solid Films 533, 29–33 (2013)

    Article  Google Scholar 

  181. P. Schrögmeier, M. Angerbauer, S. Dietrich, M. Ivanov, H. Honigschmid, C.-M. Liaw, et al., Time discrete voltage sensing and iterative programming control for a 4F 2 multilevel CBRAM, in VLSI Circuits, 2007 I.E. Symposium on (2007), pp. 186–187

  182. R. Symanczyk, R. Dittrich, J. Keller, M. Kund, G. Müller, B. Ruf, et al., Conductive bridging memory development from single cells to 2Mbit memory arrays, in Non-Volatile Memory Technology Symposium, 2007. NVMTS'07 (2007), pp. 71–75

  183. N. Gilbert, Y. Zhang, J. Dinh, B. Calhoun, S. Hollmer, A 0.6 V 8 pJ/write non-volatile CBRAM macro embedded in a body sensor node for ultra low energy applications, in VLSI Circuits (VLSIC), 2013 Symposium on. IEEE (2013)

  184. R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, et al., 19.7 A 16Gb ReRAM with 200 MB/s write and 1GB/s read in 27 nm technology, in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 I.E. International (2014), pp. 338–339

  185. M.-J. Lee, D. Lee, H. Kim, H.-S. Choi, J.-B. Park, H. G. Kim, et al., Highly-scalable threshold switching select device based on chaclogenide glasses for 3D nanoscaled memory arrays, in Electron Devices Meeting (IEDM), 2012 I.E. International (2012), pp. 2.6. 1–2.6. 3

  186. M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, et al., Excellent selector characteristics of nanoscale for high-density bipolar ReRAM applications. Electron Device Lett., IEEE 32, 1579–1581 (2011)

    Article  Google Scholar 

  187. S. Kim, X. Liu, J. Park, S. Jung, W. Lee, J. Woo, et al., Ultrathin (&lt; 10 nm) Nb 2 O 5/NbO 2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications, in VLSI Technology (VLSIT), 2012 Symposium on (2012), pp. 155–156

  188. K. Gopalakrishnan, R. Shenoy, C. Rettner, K. Virwani, D. Bethune, R. Shelby, et al., Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays, in 2010 Symposium on VLSI Technology (2010), pp. 205–206

  189. A. Padilla, G. Burr, R. Shenoy, K. Raman, D. Bethune, R. Shelby, et al., The origin of massive nonlinearity in Mixed-Ionic-Electronic-Conduction (MIEC)-based Access Devices, as revealed by numerical device simulation, in 72nd Device Research Conference (2014), pp. 163–164

  190. S.C. Puthentheradam, D.K. Schroder, M.N. Kozicki, Inherent diode isolation in programmable metallization cell resistive memory elements. Appl. Phys. A 102, 817–826 (2011)

    Article  Google Scholar 

  191. D.A. Drachman, Do we have brain to spare? Neurology 64, 2004–2005 (2005)

    Article  Google Scholar 

  192. D. Johnston, S.M.-S. Wu, R. Gray, Foundations of cellular neurophysiology (MIT press, Cambridge, 1995)

    Google Scholar 

  193. G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006)

    Article  Google Scholar 

  194. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, H.-S.P. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58, 2729–2737 (2011)

    Article  Google Scholar 

  195. M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K.K. Likharev, D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)

    Article  Google Scholar 

  196. Y. Li, Y. Zhong, L. Xu, J. Zhang, X. Xu, H. Sun, et al., Ultrafast synaptic events in a chalcogenide memristor, Sci. Rep., 3 (2013)

  197. J.R. Schwank, Basic mechanisms of radiation effects in the natural space radiation environment (Sandia National Labs, Albuquerque, NM (United States), 1994)

    Google Scholar 

  198. D. Nguyen, S. Guertin, G. Swift, A. Johnston, Radiation effects on advanced flash memories. Nucl. Sci., IEEE Trans. 46, 1744–1750 (1999)

    Article  Google Scholar 

  199. Y. Gonzalez-Velo, H. Barnaby, M. Kozicki, P. Dandamudi, A. Chandran, K. Holbert, et al., Total-ionizing-dose effects on the resistance switching characteristics of chalcogenide programmable metallization cells. Nucl. Sci., IEEE Trans. 60, 4563–4569 (2013)

  200. J. Taggart, Y. Gonzalez-Velo, D. Mahalanabis, A. Mahmud, H.J. Barnaby, M.N. Kozicki, et al., Ionizing radiation effects on nonvolatile memory properties of programmable metallization cells. Nucl. Sci., IEEE Trans. 61, 2985–2990 (2014)

    Article  Google Scholar 

  201. Y. Gonzalez-Velo, A. Mahmud, W. Chen, J. Taggart, H. Barnaby, M. Kozicki, et al., TID impact on process modified CBRAM cells, in Radiation and Its Effects on Components and Systems (RADECS), 2015 15th European Conference on (2015), pp. 1–4

  202. P. Dandamudi, M.N. Kozicki, H.J. Barnaby, Y. Gonzalez-Velo, K.E. Holbert, Total ionizing dose tolerance of based programmable metallization cells. Nucl. Sci., IEEE Trans. 61, 1726–1731 (2014)

    Article  Google Scholar 

  203. R. Fang, Y.G. Velo, W. Chen, K.E. Holbert, M.N. Kozicki, H. Barnaby, et al., Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory. Appl. Phys. Lett. 104, 183507 (2014)

    Article  Google Scholar 

  204. M.J. Marinella, S.M. Dalton, P.R. Mickel, P.E.D. Dodd, M.R. Shaneyfelt, E. Bielejec, et al., Initial assessment of the effects of radiation on the electrical characteristics of memristive memories. IEEE Trans. Nucl. Sci. 59, 2987–2994 (2012)

    Article  Google Scholar 

  205. Y. Wang, H. Lv, W. Wang, Q. Liu, S. Long, Q. Wang, et al., Highly stable radiation-hardened resistive-switching memory. IEEE Electron Device Lett. 31, 1470–1472 (2010)

    Article  Google Scholar 

  206. L. Zhang, R. Huang, D. Gao, P. Yue, P. Tang, F. Tan, et al., Total ionizing dose (TID) effects on-based resistance change memory. IEEE Trans. Electron Devices 58, 2800–2804 (2011)

    Article  Google Scholar 

  207. A. H. Edwards, K. A. Campbell, Density functional study of Ag in Ge 2 Se 3, in Non-Volatile Memory Technology Symposium (NVMTS), 2009 10th Annual (2009), pp. 1–7

  208. S. Ferch, E. Linn, R. Waser, S. Menzel, Simulation and comparison of two sequential logic-in-memory approaches using a dynamic electrochemical metallization cell model. Microelectron. J. 45, 1416–1428 (2014)

    Article  Google Scholar 

  209. A. Siemon, S. Menzel, R. Waser, E. Linn, A complementary resistive switch-based crossbar array adder. IEEE J. Emerging Sel. Top Circuits Syst. 5, 64–74 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Air Force Research Laboratory under grant no. FA9453-13-1-0288 (H.J.B.) and by the Defense Threat Reduction Agency under grant no. HDTRA1-11-1-005 (H.J.B. and M.N.K.). S.T. acknowledges funding by a DFG research fellowship under grant TA 1122/1-1. M.N.K. would also like to acknowledge the support of Axon Technologies Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Tappertzhofen, S., Barnaby, H.J. et al. SiO2 based conductive bridging random access memory. J Electroceram 39, 109–131 (2017). https://doi.org/10.1007/s10832-017-0070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0070-5

Keywords

Navigation