Skip to main content

Advertisement

Log in

Assessment of energy dissipation mechanisms for AT-cut QCM sensors with high frequency impedance analysis and optimization heuristics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the present contribution, five unloaded AT-cut quartz crystal microbalance (QCM) sensors with nominal resonant frequencies equal to 5, 5.2 and 10 MHz, bearing silver (5.2 MHz) and gold electrodes (5 and 10 MHz) on their main surfaces, were bonded on a high pressure cell and studied with respect to their electrical and frequency response in the temperature range from 20 °C to 150 °C at a nitrogen atmosphere (P = 1 atm). The goal was the qualitative and the quantitative identification of energy dissipation mechanisms of quartz resonators, based on their electrical response and effective properties (quartz viscosity and oscillation area). Electrical response measurements took place with high frequency impedance analysis (HF-IA), while admittance data were processed with the use of equivalent circuit theory and the Differential Evolution heuristic for nonlinear optimization, equipped with an error analysis module. Apart from the inherent energy dissipation due to sensor mounting and electrode related mass and stress effect, dissipation was also induced due to the manifestation of thermally active point defects at temperatures between 65 °C and 145 °C. These point defects are attributed to the movement of interstitial sodium ions within the crystal lattice. Energy dissipation was also observed due to temperature dependent (70–90 °C) creep deformation of the 60Sn-40Pb solder joints which bonded the mounted sensors to the experimental setup. A critical discussion on the magnitude of all observed dissipation mechanisms is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. G. Sauerbrey, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Ztg. Phys. 155, 206 (1959)

    Article  CAS  Google Scholar 

  2. K.A. Marx, Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4, 1099 (2003)

    Article  CAS  Google Scholar 

  3. D.A. Buttry, M.D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92, 1355 (1992)

    Article  CAS  Google Scholar 

  4. M.A. Cooper, V.T. Singleton, A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. J. Mol. Recognit. 20, 154 (2007)

    Article  CAS  Google Scholar 

  5. B. Becker, M.A. Cooper, A survey of the 2006–2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 24, 754 (2011)

    Article  CAS  Google Scholar 

  6. C.K. O’ Sullivan, G.G. Guilbault, Commercial quartz crystal microbalances—theory and applications. Biosens. Bioelectron. 14, 663 (1999)

    Article  Google Scholar 

  7. S.J. Martin, V.E. Granstaff, G.C. Frye, Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 63, 2272 (1991)

    Article  CAS  Google Scholar 

  8. B. Zimmermann, R. Lucklum, P. Hauptmann, J. Rabe, S. Büttgenbach, Electrical characterization of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors Actuators B 76, 47 (2001)

    Article  CAS  Google Scholar 

  9. R.F. Schmitt, J.W. Allen, J.F. Vetelino, J. Parks, C. Zhang, Bulk acoustic wave modes in quartz for sensing measurand-induced mechanical and electrical property changes. Sensors Actuators B 76, 95 (2001)

    Article  CAS  Google Scholar 

  10. J. Hossenlopp, L.H. Jiang, R. Cernosek, F. Josse, Characterization of epoxy resin (SU-8) film using thickness-shear mode (TSM) resonator under various conditions. J. Polym. Sci. B Polym. Phys. 42, 2373 (2004)

    Article  CAS  Google Scholar 

  11. H.L. Bandey, S.J. Martin, R.W. Cernocek, A.R. Hillman, Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal. Chem. 71, 2205 (1999)

    Article  CAS  Google Scholar 

  12. R. Lucklum, P. Hauptmann, Determination of polymer shear modulus with quartz crystal resonators. Faraday Discuss. 107, 123 (1997)

    Article  CAS  Google Scholar 

  13. A. Katz, M.D. Ward, Probing solvent dynamics in concentrated polymer films with a high-frequency shear mode quartz resonator. J. Appl. Phys. 80, 4153 (1996)

    Article  CAS  Google Scholar 

  14. L.F. Qin, H.B. Cheng, J.M. Li, Q.M. Wang, Characterization of polymer nanocomposite films using quartz thickness shear mode (TSM) acoustic wave sensor. Sensors Actuators A 136, 111 (2007)

    Article  CAS  Google Scholar 

  15. G.H. Kim, A.G. Rand, S.V. Letcher, Impedance characterization of a piezoelectric immunosensor Part I: Antibody coating and buffer solution. Biosens. Bioelectron. 18, 83 (2003)

    Article  CAS  Google Scholar 

  16. F. Lu, H.P. Lee, P. Lu, X.D. Su, S.P. Lim, Experimentally fitting the attraction strength of an interface by the response of the thickness shear-mode acoustic wave sensor. J. Phys. D. Appl. Phys. 38, 1599 (2005)

    Article  CAS  Google Scholar 

  17. Y. Jiménez, R. Fernández, R. Torres, A. Arnau, A contribution to solve the problem of coating properties extraction in quartz crystal microbalance applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1057 (2006)

    Article  Google Scholar 

  18. M. Cassiède, J.H. Paillol, J. Pauly, J.-L. Daridon, Electrical behaviour of AT-cut quartz crystal resonators as a function of overtone number. Sensors Actuators A 159, 174 (2010)

    Article  Google Scholar 

  19. Y.-K. Yong, M.S. Patel, M. Tanaka, Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting support losses. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1831 (2010)

    Article  Google Scholar 

  20. Y.-K. Yong, M.S. Patel, Piezoelectric resonators with mechanical damping and resistance in current conduction. Sci. China Ser. G Phys. Mech. Astron. 50, 650 (2007)

    Article  CAS  Google Scholar 

  21. J.H. Teuscher, R.L. Garrell, Stabilization of quartz crystal oscillators by a conductive adhesive. Anal. Chem. 67, 3372 (1995)

    Article  CAS  Google Scholar 

  22. J.J. Martin, Aluminum-related acoustic loss in AT-cut quartz crystals. J. Appl. Phys. 56, 2536 (1984)

    Article  CAS  Google Scholar 

  23. J.J. Martin, H.B. Hwang, H. Bahadur, G.A. Berman, Room-temperature acoustic loss peaks in quartz. J. Appl. Phys. 65, 4666 (1989)

    Article  CAS  Google Scholar 

  24. H. Bahadur, Hydrogen and its radiation effects in quartz crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1190 (2000)

    Article  CAS  Google Scholar 

  25. J.J. Martin, High-Temperature Acoustic Loss in Thickness-Shear Mode Quartz Resonators, (Proc. IEEE/EIA Int. Freq. Contr. Symp. Exhib., IEEE, Kansas City, MO, 2000), pp. 359–363

  26. J.J. Martin, A.R. Lopez, High-temperature acoustic loss in AT-cut, BT-cut and SC-cut quartz resonators, (Proc. IEEE Int. Freq. Contr. Symp. PDA Exhib., IEEE, Seattle, WA, 2001), pp. 316–323

  27. S.P. Doherty, J.J. Martin, The effects of irradiation and electrodiffusion on the sodium acoustic loss peak in synthetic quartz. J. Appl. Phys. 51, 4164 (1980)

    Article  CAS  Google Scholar 

  28. M. Planat, J.J. Gagnepain, 1/f noise in quartz crystal resonators in relation with acoustic losses and frequency dispersion. Appl. Phys. Lett. 50, 510 (1987)

    Article  CAS  Google Scholar 

  29. H. Jain, A.S. Nowick, Electrical conductivity of synthetic and natural quartz crystals. J. Appl. Phys. 53, 477 (1982)

    Article  CAS  Google Scholar 

  30. P.C.Y. Lee, N. Liu, A. Ballato, Thickness vibrations of a piezoelectric plate with dissipation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 52 (2004)

    Article  Google Scholar 

  31. H. Fritze, High-temperature piezoelectric crystals and devices. J. Electroceram. 26, 122 (2011)

    Article  CAS  Google Scholar 

  32. I. Yu, Y.W. Song, Temperature dependence of the intrinsic mechanical Q of AT-cut quartz crystal resonators. Physica B 194–196, 431 (1994)

    Article  Google Scholar 

  33. G. Thornell, F. Ericson, C. Hedlund, J. Öhrmalm, J. Schweitz, G. Portnoff, Residual stress in sputtered gold films on quartz measured by the cantilever beam deflection technique. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 981 (1999)

    Article  CAS  Google Scholar 

  34. V. Tsionsky, E. Gileadi, Early stages in the electroplating of copper and silver on gold. Mater. Sci. Eng. A 302, 120 (2001)

    Article  Google Scholar 

  35. T.C. Hodge, S.A. BidstrupAllen, P.A. Kohl, Stresses in thin film metallization. IEEE Trans. Compon. Packaging Manuf. Technol. A 20, 241 (1997)

    Article  CAS  Google Scholar 

  36. M. Cassiede, J. Pauly, J.H. Paillol, J.L. Daridon, Electrical characterization of a quartz crystal in high pressure CO2 by impedance analysis. High Pressure Res. 30, 72 (2010)

    Article  CAS  Google Scholar 

  37. K. Park, M. Koh, C. Yoon, H. Kim, H. Kim, The behavior of quartz crystal microbalance in high pressure CO2. J. Supercrit. Fluids 29, 203 (2004)

    Article  CAS  Google Scholar 

  38. V. Tsionsky, L. Daikhin, M. Urbakh, E. Gileadi, Behavior of quartz crystal microbalance in nonadsorbed gases at high pressures. Langmuir 11, 674 (1995)

    Article  CAS  Google Scholar 

  39. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341 (1997)

    Article  Google Scholar 

  40. M. Schwaab, E.C. Biscaia, J.L. Monteiro, J.C. Pinto, Nonlinear parameter estimation through particle swarm optimization. Chem. Eng. Sci. 63, 1542 (2008)

    Article  CAS  Google Scholar 

  41. A.B. Tesler, D.R. Lewin, S. Baltianski, Y. Tsur, Analyzing results of impedance spectroscopy using novel evolutionary programming techniques. J. Electroceram. 24, 245 (2010)

    Article  Google Scholar 

  42. C. Filiâtre, G. Bardèche, M. Valentin, Transmission-line model for immersed quartz-crystal sensors. Sensors Actuators A 44, 137 (1994)

    Article  Google Scholar 

  43. M.A.M. Noël, P.A. Topart, High-frequency impedance analysis of quartz crystal microbalances.1. general considerations. Anal. Chem. 66, 484 (1994)

    Article  Google Scholar 

  44. S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15, 4 (2011)

    Article  Google Scholar 

  45. S. Das, A. Abraham, A. Konar, Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives. Stud. Comput. Intell. 116, 1 (2008)

    Article  Google Scholar 

  46. T.J. VanderNoot, I. Abrahams, The use of genetic algorithms in the non-linear regression of immittance data. J. Electroanal. Chem. 448, 17 (1998)

    Article  CAS  Google Scholar 

  47. A. Kakalis, C. Panayiotou, Characterization of interfaces formed between thin, poly(L-lactic acid) polymer films and quartz crystal microbalance, sensor substrates with high frequency impedance analysis. Sensors Actuators A 169, 59 (2011)

    Article  CAS  Google Scholar 

  48. A.J. Sunwoo, J.W. Morris Jr., G.K. Lucey Jr., The growth of Cu-Sn intermetallics at a pretinned copper-solder interface. Metall. Trans. A 23A, 1323 (1992)

    CAS  Google Scholar 

  49. P.G. Harris, K.S. Chaggar, The role of intermetallic compounds in lead-free soldering. Solder. Surf. Mt. Technol. 10, 38 (1998)

    Article  CAS  Google Scholar 

  50. X. Luo, D.D.L. Chung, A comparative study of silver-epoxy and tin-lead solder in their joints with copper, through mechanical and electrical measurements during debonding. J. Mater. Sci. 34, 273 (1999)

    Article  CAS  Google Scholar 

  51. N. Wakatsuki, Y. Kagawa, K. Suzuki, M. Haba, Temperature-frequency characteristics simulation of piezoelectric resonators and their equivalent circuits based on three-dimensional finite element modelling. Int. J. Numer. Model. 16, 479 (2003)

    Article  Google Scholar 

  52. http://www.icsi.berkeley.edu/~storn/code.html#f90c, last accessed: November 18, 2012

  53. S.K. Mishra, Performance of the barter, the differential evolution and the simulated annealing methods for global optimization on some new and some old test functions, (Soc. Sci. Res. Netw. Work. Pap. Series 2006), http://papers.ssrn.com/sol3/papers.cfm?abstract_id=941630, last accessed: June 8, 2012

  54. H.-Y. Fan, J. Lampinen, A directed mutation operation for the differential evolution algorithm. Int. J. Ind. Eng. 10, 6 (2003)

    Google Scholar 

  55. D. Zwillinger, S. Kokoska, Standard probability and statistics tables and formulae, 1st edn. (CRC/Chapman & Hall, New York, 2000). ch. 6.8

    Google Scholar 

  56. C. Behling, The non-gravimetric response of thickness shear mode resonators for sensor applications (Otto-von-Guericke University, Magdeburg, 1999), p. 68. Dissertation

    Google Scholar 

  57. R. Bechmann, Frequency-temperature-angle characteristics of AT-type resonators made of natural and synthetic quartz. Proc. IRE 44, 1600 (1956)

    Article  Google Scholar 

  58. R.W. Ward, The constants of alpha quartz, 14th Piezoelect. Dev. Conf. Exhib., (IEEE, 1992), pp. 15pp., http://www.ieee-uffc.org/frequency_control/teaching/fc_conqtz2.html, last accessed: November 18, 2012

  59. P.T. Vianco, W.R. Conley, J.K.G. Panitz, Resistivity, adhesive strength, and residual stress measurements of thin film metallizations on single crystal quartz, Proceedings of the 44th Annual Symposium on Frequency Control, 1990, pp. 207–215

  60. J. Detaint, B. Capelle, Y. Epelboin, Study of the factors limiting the Q factors of high performance quartz resonators, (IEEE Int. Freq. Contr. Symp. Joint 22nd Eur. Freq. Time Forum., IEEE, 2009), pp. 352–357

  61. J.R. Vig, Introduction to quartz frequency standards, (1992), http://www.ieee-uffc.org/frequency_control/teaching.asp?vig=vigstatc, last accessed: November 18, 2012

  62. J.J. Martin, Electrodiffusion (sweeping) of ions in quartz - a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 288 (1988)

    Article  CAS  Google Scholar 

  63. R. Strauss, SMT Soldering Handbook, 2nd edn. (Newnes, Woburn, 1998), p. 22

    Google Scholar 

  64. N. Jiang, J.A. Clum, R.R. Chromik, E.J. Cotts, Thermal expansion of several Sn-based intermetallic compounds. Scr. Mater. 37, 1851 (1997)

    Article  CAS  Google Scholar 

  65. H.-T. Lee, M.-H. Chen, Infuence of intermetallic compounds on the adhesive strength of solder joints. Mater. Sci. Eng. A 333, 24 (2002)

    Article  Google Scholar 

  66. K.D. Kim, D.D.L. Chung, Effect of heating on the electrical resistivity of conductive adhesive and soldered joints. J. Electron. Mater. 31, 933 (2002)

    Article  CAS  Google Scholar 

  67. A. Lee, C.E. Ho, K.N. Subramanian, Electromigration induced microstructure and morphological changes in eutectic SnPb solder joints. J. Mater. Res. 22, 3265 (2007)

    Article  CAS  Google Scholar 

  68. Y.T. Yeh, C.K. Chou, Y.C. Hsu, C. Chen, K.N. Tu, Threshold-current density of electromigration in eutectic SnPb solder. Appl. Phys. Lett. 86, 203504–1 (2005)

    Article  Google Scholar 

  69. Y.C. Chuang, C.Y. Liu, The effect of thermomigration on phase coarsening in a eutectic SnPb alloy. J. Electron. Mater. 36, 1495 (2007)

    Article  CAS  Google Scholar 

  70. M.T. Sheen, C.M. Chang, H.C. Teng, J.H. Kuang, K.C. Hsieh, W.H. Cheng, The influence of thermal aging on joint strength and fracture surface of Pb/Sn and Au/Sn solders in laser diode packages. J. Electron. Mater. 31, 895 (2002)

    Article  CAS  Google Scholar 

  71. S. Choi, T.R. Bieler, J.P. Lucas, K.N. Subramanian, Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging. J. Electron. Mater. 28, 1209 (1999)

    Article  CAS  Google Scholar 

  72. D.J. Xie, A new experimental method to evaluate creep fatigue life of flip-chip solder joints with underfill. Microelectron. Reliab. 40, 1191 (2000)

    Article  Google Scholar 

  73. J.J. Stephens, D.R. Frear, Time-dependent deformation behavior of near-eutectic 60Sn-40Pb solder. Metall. Mater. Trans. A 30A, 1301 (1999)

    Article  CAS  Google Scholar 

  74. F. Zhu, H. Zhang, R. Guan, S. Liu, The effect of temperature and strain rate on the tensile properties of a Sn99.3C0.7(Ni) lead-free solder alloy. Microelectron. Eng. 84, 144 (2007)

    Article  CAS  Google Scholar 

  75. D. Kwon, M.H. Azarian, M. Pecht, Early detection of interconnect degradation by continuous monitoring of RF impedance. IEEE Trans. Device Mater. Reliab. 9, 296 (2009)

    Article  Google Scholar 

  76. W.J. Tomlinson, G.A. Cooper, Fracture mechanism of brass/Sn-Pb-Sb solder joints and the effect of production variables on the joint strangth. J. Mater. Sci. 21, 1730 (1986)

    Article  CAS  Google Scholar 

  77. V. Tsionsky, E. Gileadi, Use of the quartz crystal microbalance for the study of adsorption from the gas phase. Langmuir 10, 2830 (1994)

    Article  CAS  Google Scholar 

  78. D. Yang, B.Y. Wu, Y.C. Chan, Microstructural evolution and atomic transport by thermomigration in eutectic tin-lead flip chip solder joints. J. Appl. Phys. 102, 043502–1 (2007)

    Article  Google Scholar 

  79. D. Yang, M.O. Alam, B.Y. Wu, Y.C. Chan, Thermomigration in eutectic tin-lead flip chip solder joints, 8th Electron. (Packaging Technol. Conf., Singapore, 2006), pp. 565–569

  80. X.Q. Shi, Z.P. Wang, W. Zhou, H.L.J. Pang, Q.J. Yang, A new creep constitutive model for eutectic solder alloy. J. Electron. Packaging 124, 85 (2002)

    Article  CAS  Google Scholar 

  81. M.H. Azarian, E. Lando, M. Pecht, An analytical model of the RF impedance change due to solder joint cracking, (15th IEEE workshop on signal propagation in interconnects, Naples, 2011), pp. 89–92

  82. D.C. Miller, C.F. Herrmann, H.J. Maier, S.M. George, C.R. Stoldt, K. Gall, Thermo-mechanical evolution of multilayer thin films: Part II. Microstructure evolution in Au/Cr/Si microcantilevers. Thin Solid Films 515, 3224 (2007)

    Article  CAS  Google Scholar 

  83. P. Kao, D. Allara, S. Tadigadapa, Fabrication and performance characteristics of high-frequency micromachined bulk acoustic wave quartz resonator arrays. Meas. Sci. Technol. 20, 124007–1 (2009)

    Article  Google Scholar 

  84. W.H. Tung, Trapped-energy high-frequency piezoelectric resonators, (MSc Thesis, The Hong Kong Polytechnic University, 2006), pp. 2-17–2-18

  85. D. Johannsmann, L.-O. Heim, A simple equation predicting the amplitude of motion of quartz crystal resonators. J. Appl. Phys. 100, 094505–1 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Panayiotou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakalis, A., Panayiotou, C. Assessment of energy dissipation mechanisms for AT-cut QCM sensors with high frequency impedance analysis and optimization heuristics. J Electroceram 30, 232–250 (2013). https://doi.org/10.1007/s10832-013-9790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-013-9790-3

Keywords

Navigation