Skip to main content
Log in

Novel deposition techniques for metal oxide: Prospects for gas sensing

  • Feature Article
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

With the growing need for high performance gas sensors, a variety of preparation methods have been introduced and investigated. In the present contribution, the focus is on novel means for preparing metal oxide gas sensor devices. First, the key gas sensor concepts are reviewed as well as the conventional deposition techniques widely used for thick and thin film deposition of metal oxides such as screen-printing and chemical and physical vapour deposition. This is followed by a review and examination of innovative deposition techniques developed within the past several years, focusing on methods with direct-write features as well as techniques offering precise control of micro- and nano-structural features of the deposited materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Assuming an n-type semiconductor

  2. More precisely, n bulk needs to be replaced by the effective bulk concentration of ionized donors [D ]eff.

References

  1. A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, Solid-state gas sensors: a review J. Electrochem. Soc 139, 3690–3704 (1992). doi:10.1149/1.2069145

    Google Scholar 

  2. F. Rettig, R. Moos, Direct thermoelectric hydrocarbon gas sensors based on SnO2 IEEE Sens. J 7, 1490–1496 (2007). doi:10.1109/JSEN.2007.906887

    Google Scholar 

  3. F. Rettig, R. Moos, Direct thermoelectric gas sensors: design aspects and first gas sensors Sens. Actuators B Chem 123, 413–419 (2007). doi:10.1016/j.snb.2006.09.002

    Google Scholar 

  4. M. Nishibori, W. Shin, K. Tajima, L.F. Houlet, N. Izu, T. Itoh, S. Tsubota, I. Matsubara, Thermoelectric gas sensor using Au loaded titania CO oxidation catalyst J. Ceram. Soc. Jpn 115, 37–41 (2007). doi:10.2109/jcersj.115.37

    Google Scholar 

  5. M. Law, D.J. Sirbuly, P.D. Yang, Chemical sensing with nanowires using electrical and optical detection Int. J. Nanotechnology 4, 252–262 (2007). doi:10.1504/IJNT.2007.013472

    ADS  Google Scholar 

  6. S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, M. Washiya, Sensing characteristics of an optical fiber sensor for hydrogen leak Sens. Actuators B Chem 93, 142–147 (2003). doi:10.1016/S0925-4005(03)00211-9

    Google Scholar 

  7. H.L. Tuller, Review of electrical properties of metal oxides as applied to temperature and chemical sensing Sens. Actuators 4, 679–688 (1984). doi:10.1016/0250-6874(83)85082-3

    Google Scholar 

  8. J. Daniels, K.H. Härdtl, D. Hennings, Defect chemistry and electrical conductivity of doped barium titanate ceramics: I–III Philips Res. Rep 31, 489–525 (1976)

    Google Scholar 

  9. J.W. Fergus, Doping and defect association in oxides for use in oxygen sensors J. Mater. Sci 38, 4259–4270 (2003). doi:10.1023/A:1026318712367

    Google Scholar 

  10. J.W. Fergus, Perovskite oxides for semiconductor-based gas sensors Sens. Actuators B Chem 123, 1169–1179 (2007). doi:10.1016/j.snb.2006.10.051

    Google Scholar 

  11. J. Gerblinger, M. Meixner, Influence of dopants on the response time and the signals of lambda sensors based on thin films of strontium titanate Sens. Actuators B Chem 6, 231–235 (1992). doi:10.1016/0925-4005(92)80061-2

    Google Scholar 

  12. R. Moos, W. Menesklou, H. Schreiner, K.H. Härdtl, Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control Sens. Actuators B Chem 67, 178–183 (2000). doi:10.1016/S0925-4005(00)00421-4

    Google Scholar 

  13. K. Sahner, R. Moos, Modeling of hydrocarbon sensors based on p-type semiconducting perovskites Phys. Chem. Chem. Phys 9, 635–642 (2007). doi:10.1039/b612965j

    PubMed  Google Scholar 

  14. G. Heiland, Zum Einfluss von Wasserstoff auf die elektrische Leitfahigkeit an der Oberflache von Zinkoxydkristallen (On the effect of hydrogen on the electrical conductivity at the surface of tin oxide crystals) Z. Phys 148(1), 15–27 (1957). doi:10.1007/BF01327362

    MathSciNet  ADS  Google Scholar 

  15. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films Anal. Chem 34, 1502 (1962). doi:10.1021/ac60191a001

    Google Scholar 

  16. N. Taguchi, U.S. Patent 3,631,436 (1971)

  17. G. Eranna, B. Joshi, D. Runthala, R. Gupta, Oxide materials for development of integrated gas sensors—a comprehensive review Crit. Rev. Solid State Mater. Sci 29, 111–188 (2004). doi:10.1080/10408430490888977

    ADS  Google Scholar 

  18. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice Mater. Sci. Eng. B—Solid State Mater. Adv. Technol 139, 1–23 (2007)

    Google Scholar 

  19. D. Williams, in Conduction and gas response of semiconductor gas sensors, ed. by Moseley, P., Tofield, B. Solid State Gas Sensors, The Adam Hilger Series on Sensors (IOP, Bristol, 1987), pp. 71–123

    Google Scholar 

  20. W. Göpel, J. Hesse, J.N. Zemel, Sensors (Wiley-VCH, Weinheim, 1995)

    Google Scholar 

  21. N. Barsan, M. Schweizer-Berberich, W. Göpel, Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report Fresenius J. Anal. Chem 365, 287–304 (1999). doi:10.1007/s002160051490

    Google Scholar 

  22. M. Batzill, Surface science studies of gas sensing materials: SnO2 Sensors 6, 1345–1376 (2006)

    Google Scholar 

  23. A. Gurlo, Interplay between O2 and Sn O2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen ChemPhysChem 7, 2041–2052 (2006). doi:10.1002/cphc.200600292

    PubMed  Google Scholar 

  24. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces During Chemisorption (Consultants Bureau, New York, 1991)

    Google Scholar 

  25. A. Rothschild, Y. Komem, Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors Sens. Actuators B Chem 93, 362–369 (2003). doi:10.1016/S0925-4005(03)00212-0

    Google Scholar 

  26. A. Rothschild, Y. Komem, N. Ashkenasy, Quantitative evaluation of chemisorption processes on semiconductors J. Appl. Phys 92, 7090–7097 (2002). doi:10.1063/1.1519946

    ADS  Google Scholar 

  27. R. Hagenbeck, R. Waser, Influence of temperature and interface charge on the grain boundary conductivity in acceptor-doped SrTiO3 ceramics J. Appl. Phys 83, 2083–2092 (1998). doi:10.1063/1.366941

    ADS  Google Scholar 

  28. T. Baiatu, R. Waser, K. Härdtl, dc electrical degradation of perovskite-type titanates: III, a model of the mechanism J. Am. Ceram. Soc. 73, 1663–1673 (1990). doi:10.1111/j.1151-2916.1990.tb09811.x

    Google Scholar 

  29. N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors J. Electroceram 7, 143–167 (2001). doi:10.1023/A:1014405811371

    Google Scholar 

  30. N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensing in the presence of humidity J. Phys. Condens. Matter 15, R813–R839 (2003). doi:10.1088/0953-8984/15/20/201

    ADS  Google Scholar 

  31. C.O. Park, S.A. Akbar, Ceramics for chemical sensing J. Mater. Sci 38, 4611–4637 (2003). doi:10.1023/A:1027402430153

    Google Scholar 

  32. M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter Small 2, 36–50 (2006). doi:10.1002/smll.200500261

    PubMed  Google Scholar 

  33. G. Korotchenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches Sens. Actuators B Chem 107, 202–232 (2005). doi:10.1016/j.snb.2004.11.097

    Google Scholar 

  34. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors Catal. Surv. Asia 7, 63–75 (2003). doi:10.1023/A:1023436725457

    Google Scholar 

  35. S. Ahlers, G. Müller, T. Doll, in Factors influencing the gas sensitivity of metal oxide materials, ed. by C. Grimes, E. Dickey, M. Pishko. Encyclopedia of Sensors, vol. X (American Scientific, Stevenson Ranch, CA, 2006), pp. 1–35

    Google Scholar 

  36. G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor Sens. Actuators B Chem 80, 125–131 (2001). doi:10.1016/S0925-4005(01)00890-5

    Google Scholar 

  37. C.O. Park, S.A. Akbar, W. Weppner, Ceramic electrolytes and electrochemical sensors J. Mater. Sci 38, 4639–4660 (2003). doi:10.1023/A:1027454414224

    ADS  Google Scholar 

  38. J.W. Fergus, Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases Sens. Actuators B Chem 122, 683–693 (2007). doi:10.1016/j.snb.2006.06.024

    Google Scholar 

  39. M. Holzinger, J. Maier, W. Sitte, Fast CO2-selective potentiometric sensor with open reference electrode Solid State Ion 86–88, 1055–1062 (1996). doi:10.1016/0167-2738(96)00250-0

    Google Scholar 

  40. T. Kida, Y. Miyachi, K. Shimanoe, N. Yamazoe, NASICON thick film-based CO2 sensor prepared by a sol–gel method Sens. Actuators B Chem 80, 28–32 (2001). doi:10.1016/S0925-4005(01)00878-4

    Google Scholar 

  41. C.M. Mari, G. Terzaghi, M. Bertolini, G.B. Barbi, A chlorine gas potentiometric sensor Sens. Actuators B Chem 8, 41–45 (1992). doi:10.1016/0925-4005(92)85006-I

    Google Scholar 

  42. D. Lutic, M. Strand, A. Lloyd-Spetz, K. Buchholt, E. Eliana Ieva, P. Käll, M. Sanati, Catalytic properties of oxide nanoparticles applied in gas sensors Top. Catal 45, 105–109 (2007). doi:10.1007/s11244-007-0248-1

    Google Scholar 

  43. A. Sammn, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas, G.W . Auner, J. Appl. Phys 87, 3101 (2000). doi:10.1063/1.372305

    ADS  Google Scholar 

  44. A. Lloyd Spetz, L. Uneus, H. Svenningstorp, P. Tobias, L.G. Ekedahl, O. Larsson, A. Göras, S. Savage, C. Harris, P. Martensson, R. Wigren, P. Salomonsson, B. Häggendahl, P. Ljung, M. Mattsson, I. Lundström, SiC based field effect gas sensors for industrial applications Phys. Stat. Sol. (A) 185, 15–25 (2001)

    ADS  Google Scholar 

  45. C.K. Kim, J.H. Lee, Y.H. Lee, N.I. Cho, D.J. Kim, W.P. Kang, Hydrogen sensing characteristics of Pd-SiC Schottky diode operating at high temperature J. Electron. Mater 28, 202–205 (1999). doi:10.1007/s11664-999-0014-1

    ADS  Google Scholar 

  46. A. Vasiliev, W. Moritz, V. Fillipov, L. Bartholomäus, A. Terentjev, T. Gabusjan, Sens. Actuators B Chem 49, 133 (1998). doi:10.1016/S0925-4005(98)00041-0

    Google Scholar 

  47. L.-G. Ekedahl, M. Eriksson, I. Lundström, Acc. Chem. Res 31, 249 (1998). doi:10.1021/ar970068s

    Google Scholar 

  48. V. Mecea, Is quartz crystal microbalance really a mass sensor Sens. Actuators A Phys 128, 270–277 (2006). doi:10.1016/j.sna.2006.01.023

    Google Scholar 

  49. I. Simon, N. Barsan, M. Bauer, U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance Sens. Actuators B Chem 73, 1–26 (2001). doi:10.1016/S0925-4005(00)00639-0

    Google Scholar 

  50. M. Graf, A. Gurlo, N. Barsan, U. Weimar, A. Hierlemann, Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films J. Nanopart. Res 8, 823–839 (2006). doi:10.1007/s11051-005-9036-7

    Google Scholar 

  51. K.D. Benkstein, C.J. Martinez, G. Li, D.C. Meier, C.B. Montgomery, S. Semancik, Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance J. Nanopart. Res 8, 809–822 (2006). doi:10.1007/s11051-005-9019-8

    Google Scholar 

  52. A. Kumar, G.M. Whitesides, Features of gold having micrometer to centimetre dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching Appl. Phys. Lett 63, 2002–2004 (1993). doi:10.1063/1.110628

    ADS  Google Scholar 

  53. M. Heule, Shaping ceramics in small scale—from microcomponents to gas sensors, Ph.D. thesis, ETH Zürich (2003)

  54. M. Heule, U.P. Schonholzer, L.J. Gauckler, Patterning colloidal suspensions by selective wetting of microcontact-printed surfaces J. Am. Ceram. Soc 24, 2733–2739 (2004). doi:10.1016/j.jeurceramsoc.2003.09.011

    Google Scholar 

  55. H.J. Lim, D.Y. Lee, Y.J. Oh, Gas sensing properties of ZnO thin films prepared by microcontact printing Sens. Actuators A Phys 125, 405–410 (2006). doi:10.1016/j.sna.2005.08.031

    Google Scholar 

  56. M. Heule, L.J. Gauckler, Miniaturised arrays of tin oxide gas sensors on single microhotplate substrates fabricated by micromolding in capillaries Sens. Actuators B Chem 93, 100–106 (2003). doi:10.1016/S0925-4005(03)00243-0

    Google Scholar 

  57. S.J. Ahn, J. Moon, Vacuum-assisted microfluidic lithography of ceramic microstructures J. Am. Ceram. Soc 88, 1171–1174 (2005). doi:10.1111/j.1551-2916.2005.00329.x

    Google Scholar 

  58. D.B. Chrisey, Materials Processing: The power of direct writing Science 289, 879–881 (2000). doi:10.1126/science.289.5481.879

    PubMed  Google Scholar 

  59. R. Rella, J. Spadavecchia, M.G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato, T. Tunno, Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation Sens. Actuators B Chem 127, 426–431 (2007). doi:10.1016/j.snb.2007.04.048

    Google Scholar 

  60. C.B. Arnold, P. Serra, A. Piqué, Laser direct-write techniques for printing of complex materials MRS Bull 32, 23–31 (2007)

    Google Scholar 

  61. R. Fryček, M. Jel, nek, T. Kocourek, P. Ftil, M. Vrňata, V. Myslík, M. Vrbová, Thin organic Layers prepared by MAPLE for gas sensor application Thin Solid Films 495, 308–311 (2006). doi:10.1016/j.tsf.2005.08.178

    ADS  Google Scholar 

  62. J. Evans, M. Edirisinghe, P.V. Coveney, J. Eames, Combinatorial searches of inorganic materials using the ink jet printer: science, philosophy and technology J. Eur. Ceram. Soc 21, 2291–2299 (2001). doi:10.1016/S0955-2219(01)00289-8

    Google Scholar 

  63. J. Evans, Direct ink jet printing of ceramics: experiment in teleology Br. Ceram. Trans. 100 (2001). doi:10.1179/096797801681332

  64. M. Bale, J.C. Carter, C.J. Creighton, H.J. Gregory, P.H. Lyon, P. Ng, L. Webb, A. Wehrum, Ink-jet printing: The route to production of full-color P-OLED displays J. Soc. Inf. Disp 14, 453–459 (2006). doi:10.1889/1.2206109

    Google Scholar 

  65. D. Kim, S. Jeong, S. Lee, B.K. Parka, J. Moon, Organic thin film transistor using silver electrodes by the ink-jet printing technology Thin Solid Films 515, 7692–7696 (2007). doi:10.1016/j.tsf.2006.11.141

    ADS  Google Scholar 

  66. M.M. Mohebi, J.R.G. Evans, Combinatorial ink-jet printer for ceramics: Calibration J. Am. Ceram. Soc. 86, 1654–1661 (2003)

    Google Scholar 

  67. J. Wang, M. Mohebi, J. Evans, Two methods to generate multiple compositions in combinatorial ink-jet printing of ceramics Macromol. Rapid Commun 26, 304–309 (2005). doi:10.1002/marc.200400460

    Google Scholar 

  68. J. Wang, J.R. Evans, Library preparation using an aspirating-dispensing ink-jet printer for combinatorial studies in ceramics J. Mater. Res 20, 2733–2740 (2005). doi:10.1557/JMR.2005.0348

    ADS  Google Scholar 

  69. S. Okamura, R. Takeuchi, T. Shiosaki, Fabrication of ferroelectric Pb(ZrTi)O3 thin films with various Zr/Ti ratios by ink-jet printing Jpn. J. Appl. Phys 41, 6714–6717 (2002). doi:10.1143/JJAP.41.6714

    ADS  Google Scholar 

  70. J. Rossiny, S. Fearn, J. Kilner, Y. Zhang, L. Chen, Combinatorial searching for novel mixed conductors Solid State Ion 177, 1789–1794 (2006). doi:10.1016/j.ssi.2006.02.050

    Google Scholar 

  71. W. Shen, Y. Zhao, C. Zhang, The preparation of ZnO based gas-sensing thin films by ink-jet printing method Thin Solid Films 483, 382–387 (2005). doi:10.1016/j.tsf.2005.01.015

    ADS  Google Scholar 

  72. D.H. Lee, Y.J. Chang, W. Stickle, C.H. Chang, Functional Porous Tin Oxide Thin Films Fabricated by Inkjet Printing Process Electrochem. Solid State Lett 10, K51–K54 (2007). doi:10.1149/1.2773531

    Google Scholar 

  73. H. Seh, T. Hyodo, H.L. Tuller, Bulk acoustic wave resonator as a sensing platform for NOx at high temperatures Sens. Actuators B Chem 108, 547–552 (2005). doi:10.1016/j.snb.2004.11.083

    Google Scholar 

  74. T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2 Sens. Actuators B Chem 106, 580–590 (2005). doi:10.1016/j.snb.2004.07.024

    Google Scholar 

  75. J.E. Smay, J. Cersarano III, J.A. Lewis, Colloidal Inks for directed assembly of 3-D periodic structures Langmuir 18, 5429–5437 (2002). doi:10.1021/la0257135

    Google Scholar 

  76. J.A. Lewis, Colloidal processing of ceramics J. Am. Ceram. Soc 83, 2341–1359 (2000)

    Google Scholar 

  77. M. Heule, S.G.L.J. Vuillemin, Powder-based ceramic meso- and microscale fabrication processes Adv. Mater 15, 1237–1245 (2003). doi:10.1002/adma.200300375

    Google Scholar 

  78. B.Y. Tay, J.R.G. Evans, M.J. Edirisinghe, Solid free form fabrication of ceramics Int. Mater. Rev 48, 341 (2003). doi:10.1179/095066003225010263

    Google Scholar 

  79. Q. Li, J.A. Lewis, Nanoparticle inks for directed assembly of three-dimensional periodic structures Adv. Mater 15, 1639–1643 (2003). doi:10.1002/adma.200305413

    Google Scholar 

  80. G.M. Gratson, J.A. Lewis, Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly Langmuir 21, 457–464 (2005). doi:10.1021/la048228d

    PubMed  Google Scholar 

  81. J.E. Smay, J. Cesarano III, B.A. Tuttle, J.A. Lewis, Directed Colloidal Assembly of Linear and Annular Lead Zirconate Titanate Arrays J. Am. Ceram. Soc 87, 293–295 (2004). doi:10.1111/j.1551-2916.2004.00293.x

    Google Scholar 

  82. G.M. Gratson, F. García-Santramaría, V. Lousse, M. Xu, S. Fan, J.A. Lewis, P.V. Braun, Direct-write assembly of three-dimensional photonic ctystals: conversion of polymer scaffolds to silicon hollow-woodpile structures Adv. Mater 18, 461–465 (2006). doi:10.1002/adma.200501447

    Google Scholar 

  83. E.B. Duoss, M. Twardowski, J.A. Lewis, Sol–Gel Inks for Direct-Write Assembly of Functional Oxides Adv. Mater 19, 3485–3489 (2007)

    Google Scholar 

  84. R. Strobel, S. Pratsinis, Flame aerosol synthesis of smart nanostructured materials J. Mater. Chem 17, 4743–4756 (2007). doi:10.1039/b711652g

    Google Scholar 

  85. Y. Liu, E. Koep, M.L. Liu, Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition Chem. Mater 17, 3997–4000 (2005). doi:10.1021/cm050451o

    Google Scholar 

  86. L. Madler, T. Sahm, A. Gurlo, N. Barsan, J.D. Grunwald, U. Weimar, S.E. Pratsinis, Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles J. Nanopart. Res 8, 783–796 (2006). doi:10.1007/s11051-005-9029-6

    Google Scholar 

  87. T. Sahm, W. Rong, N. Barsan, L. Mädler, U. Weimar, Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors Sens. Actuators B Chem. 127, 63–68 (2007). doi:10.1016/j.snb.2007.07.001

    Google Scholar 

  88. R. Strobel, F. Krumeich, W. Stark, S. Pratsinis, A. Baiker, Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation J. Catal. 222, 307–314 (2004)

    Google Scholar 

  89. T. Sahm, L. Mädler, A. Gurlo, N. Barsan, S. Pratsinis, U. Weimar, Flame spray synthesis of tin dioxide nanoparticles for gas sensing Sens. Actuators B Chem 98, 148–153 (2004). doi:10.1016/j.snb.2003.10.003

    Google Scholar 

  90. H. Herman, Thermal spray: Current status and future trends MRS Bull 25, 17–25 (2000)

    Google Scholar 

  91. S. Sampath, Thermal-spray processing of materials MRS Bull 25, 12–14 (2000)

    Google Scholar 

  92. K. Ahn, B.W. Wessels, S. Sampath, Spinel humidity sensors prepared by thermal spray direct writing Sens. Actuators B Chem 107, 342–346 (2005). doi:10.1016/j.snb.2004.10.020

    Google Scholar 

  93. M. Tiemann, Porous metal oxides as gas sensors Chem. Eur. J 13, 8376–8388 (2007). doi:10.1002/chem.200700927

    ADS  Google Scholar 

  94. G. Li, S. Kawi, High-surface-area SnO2: a novel semiconductor-oxide gas sensor Mater. Lett 34, 98–102 (1998)

    Google Scholar 

  95. Y. Shimizu, A. Ayami Jono, T. Takeo Hyodo, M. Egashira, Preparation of large mesoporous SnO 2 powder for gas sensor application Sensors Actuators B 108, 56–61 (2005). doi:10.1016/j.snb.2004.10.047

    Google Scholar 

  96. A. Prim, E. Pellicer, E. Rossinyol, F. Peirp, A. Cornet, J.R. Morante, A novel mesoporous CaO-loaded In2O3 material for CO2 sensing Adv. Funct. Mater 17, 2957–2963 (2007). doi:10.1002/adfm.200601072

    Google Scholar 

  97. E. Rossinyol, A. Prim, E. Pellicer, J. Rodriguez, F. Peiro, A. Cornet, J.R. Morante, B.Z. Tian, T. Bo, D.Y. Zhao, Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection Sens. Actuators B, Chemical 126, 18–23 (2007)

    Google Scholar 

  98. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez–Ramirez, F. Peiro, A. Cornet, J.R. Morante, L.A. Solovyov, B.Z. Tian, T. Bo, D.Y. Zhao, Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications Adv. Funct. Mater. 17, 1801–1806 (2007). doi:10.1002/adfm.200600722

    Google Scholar 

  99. F. Li, L. Zhang, R.M. Metzger, On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide Chem. Mater 10, 2470–2480 (1998). doi:10.1021/cm980163a

    Google Scholar 

  100. A. Kolmakov, M. Moskovits, Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures Annu. Rev. Mater. Res. 34, 151–180 (2004). doi:10.1146/annurev.matsci.34.040203.112141

    ADS  Google Scholar 

  101. J. Wang, S. Xie, W. Zhou, Growth of binary oxide nanowires MRS Bull 32, 123–126 (2007)

    Google Scholar 

  102. C.M. Lieber, Z.L. Wang, Functional nanowires MRS Bull 32, 99–108 (2007)

    Google Scholar 

  103. M. Law, J. Goldberger, P.D. Yang, Semiconductor nanowires and nanotubes Annu. Rev. Mater. Res 34, 83–122 (2004). doi:10.1146/annurev.matsci.34.040203.112300

    ADS  Google Scholar 

  104. E. Comini, Metal oxide nano-crystals for gas sensing Anal. Chim. Acta 568, 28–40 (2006). doi:10.1016/j.aca.2005.10.069

    PubMed  Google Scholar 

  105. F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, Nanowire-based nanoelectronic devices in the life sciences MRS Bull 32, 142–149 (2007)

    Google Scholar 

  106. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature Angew. Chem. Int. Ed 41, 2405–2408 (2002)doi:10.1002/1521-3773(20020703)41:13<2405::AID-ANIE2405>3.0.CO;2-3

    Google Scholar 

  107. P.I. Gouma, Nanostructured polymorphic oxides for advanced chemosensors Rev. Adv. Mater. Sci 5, 147–154 (2003)

    Google Scholar 

  108. F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Rodriguez, A. Romano-Rodriguez, J.R. Morante, S. Barth, S. Mathur, T.Y. Choi, D. Poulikakos, V. Callegari, P.M. Nellen, Fabrication and electrical characterization of circuits based on individual tin oxide nanowires Nanotechnology 17, 5577–5583 (2006). doi:10.1088/0957-4484/17/22/009

    Google Scholar 

  109. W. Lu, C.M. Lieber, Semiconductor nanowires J. Phys. D Appl. Phys 39, R387–R406 (2006). doi:10.1088/0022-3727/39/21/R01

    ADS  Google Scholar 

  110. R.S. Wagner, W.C. Ellis, Vapor–liquid–solid mechanism of single crystal growth Appl. Phys. Lett 4, 89–90 (1964). doi:10.1063/1.1753975

    ADS  Google Scholar 

  111. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, H. Ruda, Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction J. Vac. Sci. Technol. B 15, 554–557 (1997). doi:10.1116/1.589291

    Google Scholar 

  112. Y. Wu, P. Yang, Direct observation of vapor–liquid–solid nanowire growth J. Am. Chem. Soc. 123, 3165–3166 (2001). doi:10.1021/ja0059084

    Google Scholar 

  113. M.S. Gudiksen, C.M. Lieber, Diameter-selective synthesis of semiconductor nanowires J. Am. Chem. Soc. 122, 8801–8802 (2000). doi:10.1021/ja002008e

    Google Scholar 

  114. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides Science 291, 1947–1949 (2001). doi:10.1126/science.1058120

    PubMed  ADS  Google Scholar 

  115. R.-Q. Zhang, Y. Lifshitz, S.-T. Lee, Oxide-assisted growth of semiconducting nanowires Adv. Mater. 15, 635–640 (2003). doi:10.1002/adma.200301641

    Google Scholar 

  116. Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation Adv. Funct. Mater 13, 9–24 (2003). doi:10.1002/adfm.200390013

    Google Scholar 

  117. E. Comini, G. Faglia, G. Sberveglieri, Z.W. Pan, Z.L. Wang, Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts Appl. Phys. Lett 81, 1869–1871 (2002). doi:10.1063/1.1504867

    ADS  Google Scholar 

  118. E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Tin oxide nanobelts electrical and sensing properties Sens. Actuators B Chem. 111–112, 2–6 (2005). doi:10.1016/j.snb.2005.06.031

    Google Scholar 

  119. A. Maiti, J.A. Rodriguez, M. Law, P. Kung, U.R. McKinney, P. Yang, SnO2 nanoribbons as NO2 sensors: Insights from first principles calculations Nano Lett. 3, 1025–1028 (2003). doi:10.1021/nl034235v

    ADS  Google Scholar 

  120. C. Yu, Q. Qing Hao, S. Saha, L. Shi, X. Kong, Z. Wang, Integration of metal oxide nanobelts with microsystems for nerve agent detection Appl. Phys. Lett 86, 063101 (2005). doi:10.1063/1.1861133

    ADS  Google Scholar 

  121. D. Meier, S. Semancik, B. Button, E. Strelcov, A. Kolmakov, Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms Appl. Phys. Lett 91, 063118 (2007). doi:10.1063/1.2768861

    ADS  Google Scholar 

  122. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices Nano Lett 4, 1919–1924 (2004). doi:10.1021/nl0489283

    ADS  Google Scholar 

  123. V.V. Sysoev, B.K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Toward the nanoscopic “electronic nose”: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors Nano Lett 6, 1584–1588 (2006). doi:10.1021/nl060185t

    PubMed  ADS  Google Scholar 

  124. S. Yoo, S.A. Akbar, K.H. Sandhage, Nanocarving of titania (TiO2): a novel approach for fabricating chemical sensing platform Ceram. Int 30, 1121–1126 (2004). doi:10.1016/j.ceramint.2003.12.085

    Google Scholar 

  125. C. Carney, S. Yoo, S.A. Akbar, TiO2–SnO2 nanostructures and their H2 sensing behavior Sens. Actuators B Chem 108, 29–33 (2006)

    Google Scholar 

  126. A.M. Azad, S.A. Akbar, Novel Structural Modulation in Ceramic Sensors Via Redox Processing in Gas Buffers Int. J. Appl. Ceram. Technol 3, 177–192 (2006). doi:10.1111/j.1744-7402.2006.02076.x

    Google Scholar 

  127. H. Miyazaki, T. Hyodo, Y. Shimizu, M. Egashira, Hydrogen-sensing properties of anodically oxidized TiO2 film sensors—Effects of preparation and pretreatment conditions Sens. Actuators B Chem 108, 467–472 (2005). doi:10.1016/j.snb.2004.10.056

    Google Scholar 

  128. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, New Benchmark for TiO2 Nanotube Array Growth by Anodization J. Phys. Chem. C 111, 7235–7241 (2007). doi:10.1021/jp070273h

    Google Scholar 

  129. G.K. Mor, O.K. Varghese, M. Paulose, K.G. Ong, C.A. Grimes, Fabrication of hydrogen sensors with transparent titanium oxide nanotube array thin films as sensing elements Thin Solid Films 496, 42–48 (2006). doi:10.1016/j.tsf.2005.08.190

    ADS  Google Scholar 

  130. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Hydrogen sensing using titania nanotubes Sens. Actuators B Chem 93, 338–344 (2003). doi:10.1016/S0925-4005(03)00222-3

    Google Scholar 

  131. A. Jaworek, Electrospray droplet sources for thin film deposition J. Mater. Sci 42, 266–297 (2007). doi:10.1007/s10853-006-0842-9

    ADS  Google Scholar 

  132. Y. Matsushima, Y. Nemoto, T. Yamazaki, K. Maeda, T. Suzuki, Fabrication of SnO2 particle-layer on the glass substrate using electrospray pyrolysis method and the gas sensitivity for H2 Sens. Actuators B Chem 96, 133–138 (2003). doi:10.1016/S0925-4005(03)00514-8

    ADS  Google Scholar 

  133. C. Ghimbeu, R. van Landschoot, J. Schoonman, M. Lumbreras, Tungsten trioxide thin films prepared by electrostatic spray deposition technique Thin Solid Films 515, 5498–5504 (2007). doi:10.1016/j.tsf.2007.01.014

    ADS  Google Scholar 

  134. D.H. Reneker, I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning Nanotechnology 7, 216–223 (1996). doi:10.1088/0957-4484/7/3/009

    ADS  Google Scholar 

  135. I. Kim, A. Rothschild, B.H. Lee, D.Y. Lim, S.M. Jo, H.L. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibres Nano Lett 6, 2009–2013 (2006). doi:10.1021/nl061197h

    PubMed  ADS  Google Scholar 

  136. Y. Dzenis, Spinning continuous fibers for nanotechnology Science 304, 1917–1919 (2004). doi:10.1126/science.1099074

    PubMed  Google Scholar 

  137. C. Drew, X. Liu, D. Ziegler, X. Wang, F.F. Bruno, J. Whitten, L.A. Samuelson, J. Kumar, Metal oxide-coated polymer nanofibers Nano Lett. 3, 143–147 (2003). doi:10.1021/nl025850m

    ADS  Google Scholar 

  138. D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning Nano Lett 3, 555–560 (2003). doi:10.1021/nl034039o

    ADS  Google Scholar 

  139. Z. Liu, D.D. Sun, P. Guo, J. Leckie, An Efficient Bicomponent TiO2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method Nano Lett 7, 1081–1085 (2007). doi:10.1021/nl061898e

    PubMed  ADS  Google Scholar 

  140. M.C. Carotta, S. Gherardi, V. Guidi, C. Malagu, G. Martinelli, B. Vendemiati, M. Sacerdoti, G. Ghiotti, S. Morandi, A. Bismuto, P. Maddalena, A. Setaro, (Ti, Sn)O2 binary solid solutions for gas sensing: Spectroscopic, optical and transport properties Sens. Actuators B Chem. 130, 38–45 (2008). doi:10.1016/j.snb.2007.07.112

    Google Scholar 

  141. K. Sahner, P. Gouma, R. Moos, Electrodeposited and sol–gel precipitated p-type SrTi1−xFexO3−δ semiconductors for gas sensing. Sensors 7, 1871–1886 (2007)

    Google Scholar 

Download references

Acknowledgments

K. Sahner gratefully acknowledges financial support of the Bavarian Science Foundation, Germany (Grant PDOK 29/05) and H. Tuller the National Science Foundation under Grants DMR 0243993 and ECS 0428696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sahner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahner, K., Tuller, H.L. Novel deposition techniques for metal oxide: Prospects for gas sensing. J Electroceram 24, 177–199 (2010). https://doi.org/10.1007/s10832-008-9554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9554-7

Keywords

Navigation