Skip to main content
Log in

Electrical Properties of Nb-Doped PZT 65/35 Ceramics: Influence of Nb and Excess PbO

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of Nb and excess PbO on the structural and electrical properties of conventionally prepared Nb-doped PZT 65/35 ceramics has been studied in this work. It is found that, from excess PbO contents as high as 4 mol%, the solubility limit of Nb in PZT occurs below 4 mol%, while a secondary prevoskite-like phase develops in the dielectric system for a further increase of Nb content. The ferroelectric and piezoelectric properties (permittivity, ferro-paraelectric phase transition, polarization, electromechanical coefficients) of such materials are thus found to be strongly dependent on the degree of densification and structural phase development during sintering at high temperatures. In particular, the nature of the ferro- to para-electric phase transition is in these materials noted to better fit a generalized rather than Smolenskii-Isupov equation, the former being appropriate for the characterization of non-purely diffuse transitions. In nice agreement with the Bokov model, substitution of Nb5 + for (Zr,Ti)4 + is found to induce only poorly diffuse phase transition in these materials. The electrical properties reported in this work are in magnitude comparable to those exhibited by PZT-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, R.C. William, and H. Jaffe, Piezoelectric Ceramics (Academic Press London and New York, 1971).

  2. Y. Yoshikawa and K. Tsuzuki, J. Am. Ceram. Soc., 75, 2520 (1992).

    Article  Google Scholar 

  3. N. Duan, N. Cereceda, B. Noheda, and J.A. Gonzalo, J. Appl. Phys., 82, 779 (1997).

    Article  Google Scholar 

  4. S.-E. Park and T.R. Shrout, J. Appl. Phys., 82, 1804 (1997).

    Article  Google Scholar 

  5. G.H. Haertling, J. Am. Ceram. Soc., 54, 303 (1971).

    Google Scholar 

  6. X. Dai, Z. Xu, and D. Vielhand, J. Appl. Phys., 79, 1021 (1996).

    Article  Google Scholar 

  7. N. Cereceda, B. Noheda and J.A. Gonzalo, J. Eur. Ceram. Soc., 19, 1201 (1999).

    Article  Google Scholar 

  8. R.D. Klissurska, K.G. Brooks, I.M. Reaney, C. Pawlaczyk, M. Kosec, and N. Setter, J. Am. Ceram. Soc., 78, 1513 (1995).

    Article  Google Scholar 

  9. R.D. Klissurska, A.K. Tagantsev, K.G. Brooks, and N. Setter, J. Am. Ceram. Soc., 80, 336 (1997).

    Google Scholar 

  10. C. Tanasoiu, E. Dimitriu, and C. Miclea, J. Eur. Ceram. Soc., 19, 1187 (1999).

    Article  Google Scholar 

  11. A.G. Peixoto, B.Sc. Materials Engineering, University of Minho, Portugal (1998).

  12. W. Cao and C.A. Randall, J. Phys. Chem. Solids, 57, 1499 (1996).

    Article  Google Scholar 

  13. M.I. Mendelson, J. Am. Ceram. Soc., 52, 443 (1969).

    Google Scholar 

  14. N. Hirose and A.R. West, J. Am. Ceram. Soc., 79, 1633 (1996).

    Google Scholar 

  15. J.-C. M’Peko, J. Portelles, F. Calderón, and G. Rodríguez, J. Mater. Sci., 33, 1633 (1998).

    Article  Google Scholar 

  16. J.-C. M’Peko, J. Mater. Sci. Lett., 19, 1925 (2000).

    Article  Google Scholar 

  17. V. Bornand, D. Granier, P. Papet, and E. Philoppot, Ann. Chim. Sci. Mat., 26, 135 (2001).

    Article  Google Scholar 

  18. Y. Sato, H. Kanai, and Y. Yamashita, Jpn. J. Appl. Phys., 33, 1380 (1994).

    Article  Google Scholar 

  19. M. Arai, J.G.P. Binner, and T.E. Cross, Jpn. J. Appl. Phys., 34, 6463 (1995).

    Article  Google Scholar 

  20. J.-C. M’Peko, Ph.D. Thesis, University of Havana, Cuba (1998).

  21. V.A. Isupov, Ferroelectrics, 90, 113 (1989).

    Google Scholar 

  22. Y. Park and K.M. Knowles, J. Appl. Phys., 83, 5702 (1998).

    Article  Google Scholar 

  23. W. Cao and C.A. Randall, J. Phys. Chem. Solids, 57, 1499 (1996).

    Article  Google Scholar 

  24. D. Remiens, E. Cattan, C. Soyer, and T. Haccart, Mat. Sci. Semicond. Processing, 5, 123 (2003).

    Article  Google Scholar 

  25. F.D. Morrison, D.C. Sinclair, and A.R. West, J. Appl. Phys., 86, 6355 (1999).

    Article  Google Scholar 

  26. K. Uchino and S. Nomura, Ferroelectr. Lett. Sect., 44, 55 (1982).

    Google Scholar 

  27. H.R. Rukmini, R.N.P. Choudhray, and D.L. Prabhakara, Mat. Lett., 44, 96 (2000).

    Article  Google Scholar 

  28. D. Viehland, M. Wuttig, and L.E. Cross, Ferroelectrics, 120, 71 (1991).

    Google Scholar 

  29. A.A. Bokov, Ferroelectrics, 131, 49 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude M’Peko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

M’Peko, JC., Peixoto, A.G., Jiménez, E. et al. Electrical Properties of Nb-Doped PZT 65/35 Ceramics: Influence of Nb and Excess PbO. J Electroceram 15, 167–176 (2005). https://doi.org/10.1007/s10832-005-2403-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-005-2403-z

Keywords

Navigation