Skip to main content
Log in

Representing stimulus motion with waves in adaptive neural fields

  • Research
  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Traveling waves of neural activity emerge in cortical networks both spontaneously and in response to stimuli. The spatiotemporal structure of waves can indicate the information they encode and the physiological processes that sustain them. Here, we investigate the stimulus-response relationships of traveling waves emerging in adaptive neural fields as a model of visual motion processing. Neural field equations model the activity of cortical tissue as a continuum excitable medium, and adaptive processes provide negative feedback, generating localized activity patterns. Synaptic connectivity in our model is described by an integral kernel that weakens dynamically due to activity-dependent synaptic depression, leading to marginally stable traveling fronts (with attenuated backs) or pulses of a fixed speed. Our analysis quantifies how weak stimuli shift the relative position of these waves over time, characterized by a wave response function we obtain perturbatively. Persistent and continuously visible stimuli model moving visual objects. Intermittent flashes that hop across visual space can produce the experience of smooth apparent visual motion. Entrainment of waves to both kinds of moving stimuli are well characterized by our theory and numerical simulations, providing a mechanistic description of the perception of visual motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Code availability

All software for carrying out model simulations and for generating figures can be found at the following code repository: https://github.com/shawsa/neural-field-synaptic-depression.

References

  • Abouzeid, A., & Ermentrout, B. (2009). Type-ii phase resetting curve is optimal for stochastic synchrony. Physical Review E, 80(1), 011911.

    Article  Google Scholar 

  • Aitken, F., Menelaou, G., Warrington, O., et al. (2020). Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex. PLoS biology, 18(12), e3001023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alamia, A., & VanRullen, R. (2023). A traveling waves perspective on temporal binding. Journal of Cognitive Neuroscience, pp 1–9.

  • Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Anstis, S. M. (1980). The perception of apparent movement. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 290(1038), 153–168.

    Article  CAS  PubMed  Google Scholar 

  • Bart, E., Bao, S., & Holcman, D. (2005). Modeling the spontaneous activity of the auditory cortex. Journal of Computational Neuroscience, 19(3), 357–378.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yishai, R., Hansel, D., & Sompolinsky, H. (1997). Traveling waves and the processing of weakly tuned inputs in a cortical network module. Journal of computational neuroscience, 4, 57–77.

    Article  CAS  PubMed  Google Scholar 

  • Bill, J., Gershman, S. J., & Drugowitsch, J. (2022). Visual motion perception as online hierarchical inference. Nature Communications, 13(1), 7403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blom, T., Feuerriegel, D., Johnson, P., et al. (2020). Predictions drive neural representations of visual events ahead of incoming sensory information. Proceedings of the National Academy of Sciences, 117(13), 7510–7515.

    Article  CAS  Google Scholar 

  • Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area mt. Annu Rev Neurosci, 28, 157–189.

    Article  CAS  PubMed  Google Scholar 

  • Bressloff, P. C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D: Nonlinear Phenomena, 155(1), 83–100.

    Article  Google Scholar 

  • Bressloff, P. C. (2011). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45(3), 033001.

    Article  Google Scholar 

  • Bressloff, P. C., & Webber, M. A. (2012). Neural field model of binocular rivalry waves. Journal of Computational Neuroscience, 32(2), 233.

    Article  PubMed  Google Scholar 

  • Bressloff, P. C., Folias, S. E., Prat, A., et al. (2003). Oscillatory waves in inhomogeneous neural media. Physical review letters, 91(17), 178101.

    Article  CAS  PubMed  Google Scholar 

  • Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural computation, 16(4), 673–715.

    Article  PubMed  Google Scholar 

  • Burak, Y., & Fiete, I. R. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS computational biology, 5(2), e1000291.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt, P., & Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent motion. Psychological review, 88(2), 171.

    Article  CAS  PubMed  Google Scholar 

  • Chemla, S., Reynaud, A., Di Volo, M., et al. (2019). Suppressive traveling waves shape representations of illusory motion in primary visual cortex of awake primate. Journal of Neuroscience, 39(22), 4282–4298.

    Article  CAS  PubMed  Google Scholar 

  • Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nature neuroscience, 17(3), 455–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol Cybern, 93, 91–108.

    Article  CAS  PubMed  Google Scholar 

  • Coombes, S., & Owen, M. R. (2004). Evans functions for integral neural field equations with heaviside firing rate function. SIAM Journal on Applied Dynamical Systems, 3(4), 574–600.

    Article  Google Scholar 

  • Coombes, S., Venkov, N. A., Shiau, L., et al. (2007). Modeling electrocortical activity through improved local approximations of integral neural field equations. Physical Review E, 76(5), 051901.

    Article  CAS  Google Scholar 

  • Coombes, S., Schmidt, H., & Bojak, I. (2012). Interface dynamics in planar neural field models. The Journal of Mathematical Neuroscience, 2(1), 1–27.

    Article  Google Scholar 

  • Dahlem, M. A. (2013). Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(4), 046101.

  • Eckert, M. P, & Zeil, J. (2001). Towards an ecology of motion vision. Motion vision: computational, neural, and ecological constraints, pp 333–369.

  • Ekman, M., Kok, P., & de Lange, F. P. (2017). Time-compressed preplay of anticipated events in human primary visual cortex. Nature Communications, 8(1), 15276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlhagen, W., & Schöner, G. (2002). Dynamic field theory of movement preparation. Psychological review, 109(3), 545.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (1996). Type i membranes, phase resetting curves, and synchrony. Neural computation, 8(5), 979–1001.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, B. (1998). Neural networks as spatio-temporal pattern-forming systems. Reports on progress in physics, 61(4), 353.

    Article  Google Scholar 

  • Ermentrout, G. B., & Kleinfeld, D. (2001). Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron, 29(1), 33–44.

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout, G. B., & McLeod, J. B. (1993). Existence and uniqueness of travelling waves for a neural network. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 123(3), 461–478.

    Article  Google Scholar 

  • Ermentrout, G. B., Jalics, J. Z., & Rubin, J. E. (2010). Stimulus-driven traveling solutions in continuum neuronal models with a general smooth firing rate function. SIAM Journal on Applied Mathematics, 70(8), 3039–3064.

    Article  Google Scholar 

  • Faye, G., & Kilpatrick, Z. P. (2018). Threshold of front propagation in neural fields: An interface dynamics approach. SIAM Journal on Applied Mathematics, 78(5), 2575–2596.

    Article  Google Scholar 

  • Folias, S. E. (2011). Nonlinear analysis of breathing pulses in a synaptically coupled neural network. SIAM Journal on Applied Dynamical Systems, 10(2), 744–787.

    Article  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2004). Breathing pulses in an excitatory neural network. SIAM Journal on Applied Dynamical Systems, 3(3), 378–407.

    Article  Google Scholar 

  • Folias, S. E., & Bressloff, P. C. (2005). Stimulus-locked traveling waves and breathers in an excitatory neural network. SIAM journal on Applied Mathematics, 65(6), 2067–2092.

    Article  Google Scholar 

  • Fortune, E. S., & Rose, G. J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in neurosciences, 24(7), 381–385.

    Article  CAS  PubMed  Google Scholar 

  • Gepshtein, S., & Kubovy, M. (2007). The lawful perception of apparent motion. Journal of Vision, 7(8), 9–9.

    Article  PubMed  Google Scholar 

  • Goulet, J., & Ermentrout, G. B. (2011). The mechanisms for compression and reflection of cortical waves. Biological cybernetics, 105, 253–268.

    Article  PubMed  Google Scholar 

  • Han, F., Caporale, N., & Dan, Y. (2008). Reverberation of recent visual experience in spontaneous cortical waves. Neuron, 60(2), 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Troy, W. C., Yang, Q., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24(44), 9897–9902.

    Article  CAS  PubMed  Google Scholar 

  • Hürlimann, F., Kiper, D. C., & Carandini, M. (2002). Testing the bayesian model of perceived speed. Vision research, 42(19), 2253–2257.

    Article  PubMed  Google Scholar 

  • Hutt, A., Bestehorn, M., & Wennekers, T. (2003). Pattern formation in intracortical neuronal fields. Network: Computation in Neural Systems, 14(2), 351

  • Itskov, V., Hansel, D., & Tsodyks, M. (2011). Short-term facilitation may stabilize parametric working memory trace. Frontiers in computational neuroscience, 5, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kane, S. A., & Zamani, M. (2014). Falcons pursue prey using visual motion cues: new perspectives from animal-borne cameras. Journal of Experimental Biology, 217(2), 225–234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keener, J. P. (2000a). Homogenization and propagation in the bistable equation. Physica D: Nonlinear Phenomena, 136(1), 1–17.

    Article  Google Scholar 

  • Keener, J. P. (2000b). Propagation of waves in an excitable medium with discrete release sites. SIAM Journal on Applied Mathematics, 61(1), 317–334.

    Article  CAS  Google Scholar 

  • Kilpatrick, Z. P. (2015). Stochastic synchronization of neural activity waves. Physical Review E, 91(4), 040701.

    Article  Google Scholar 

  • Kilpatrick, Z. P. (2018). Synaptic mechanisms of interference in working memory. Scientific Reports, 8(1), 1–20.

    Article  CAS  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010a). Binocular rivalry in a competitive neural network with synaptic depression. SIAM Journal on Applied Dynamical Systems, 9(4), 1303–1347.

    Article  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010b). Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Physica D: Nonlinear Phenomena, 239(9), 547–560.

    Article  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010c). Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. Journal of Computational Neuroscience, 28(2), 193–209.

    Article  PubMed  Google Scholar 

  • Kilpatrick, Z. P., & Bressloff, P. C. (2010d). Stability of bumps in piecewise smooth neural fields with nonlinear adaptation. Physica D: Nonlinear Phenomena, 239(12), 1048–1060.

    Article  CAS  Google Scholar 

  • Kilpatrick, Z. P., & Ermentrout, B. (2012). Response of traveling waves to transient inputs in neural fields. Physical Review E, 85, 021910.

    Article  Google Scholar 

  • Kilpatrick, Z. P., & Faye, G. (2014). Pulse bifurcations in stochastic neural fields. SIAM Journal on Applied Dynamical Systems, 13(2), 830–860.

    Article  Google Scholar 

  • Kilpatrick, Z. P., Folias, S. E., & Bressloff, P. C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7(1), 161–185.

    Article  Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The bayesian brain: the role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12), 712–719.

    Article  CAS  PubMed  Google Scholar 

  • Koffka, K. (2013). Principles of Gestalt psychology, (Vol. 44). Routledge.

  • Kolers, P. A. (2013). Aspects of motion perception: International series of monographs in experimental psychology, (Vol. 16). Elsevier.

  • Korte, A. (1915). Kinematoskopische untersuchungen. Zeitschrift fur Psychologie, 65.

  • Loxley, P., & Robinson, P. (2009). Soliton model of competitive neural dynamics during binocular rivalry. Physical review letters, 102(25), 258701.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Y., Sato, Y., & Si, Amari. (2011). Traveling bumps and their collisions in a two-dimensional neural field. Neural Computation, 23(5), 1248–1260.

    Article  PubMed  Google Scholar 

  • Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2003). Interception of real and apparent motion targets: psychophysics in humans and monkeys. Experimental Brain Research, 152, 106–112.

    Article  PubMed  Google Scholar 

  • Muckli, L., Kohler, A., Kriegeskorte, N., et al. (2005). Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS biology, 3(8), e265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller, L., Chavane, F., Reynolds, J., et al. (2018). Cortical travelling waves: mechanisms and computational principles. Nature Reviews Neuroscience, 19(5), 255–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, M., Ákos, Z., Biro, D., et al. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28(9), 2252–2260.

    Article  PubMed  Google Scholar 

  • Pang, Z., Alamia, A., & VanRullen, R. (2020). Turning the stimulus on and off changes the direction of \(\alpha\) traveling waves. Eneuro, 7(6).

  • Pinto, D. J., & Ermentrout, G. B. (2001), Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses. SIAM Journal on Applied Mathematics, 62(1), 206–225.

  • Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254(6), 102–109.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, K. A., Schiff, S. J., & Gluckman, B. J. (2005). Control of traveling waves in the mammalian cortex. Physical review letters, 94(2), 028103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human visual speed perception. Nature neuroscience, 9(4), 578–585.

    Article  CAS  PubMed  Google Scholar 

  • Tenenbaum, J. B., Kemp, C., Griffiths, T. L., et al. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  • Torney, C. J., Hopcraft, J. G. C., Morrison, T. A., et al. (2018). From single steps to mass migration: the problem of scale in the movement ecology of the serengeti wildebeest. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1746), 20170012.

    Article  Google Scholar 

  • Townsend, R. G., Solomon, S. S., Martin, P. R., et al. (2017). Visual motion discrimination by propagating patterns in primate cerebral cortex. Journal of Neuroscience, 37(42), 10074–10084.

    Article  CAS  PubMed  Google Scholar 

  • Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.

    Article  CAS  PubMed  Google Scholar 

  • Ullman, S. (1979). The interpretation of visual motion. Massachusetts Inst of Technology Pr.

  • Venkov, N. A., Coombes, S., & Matthews, P. C. (2007). Dynamic instabilities in scalar neural field equations with space-dependent delays. Physica D: Nonlinear Phenomena, 232(1), 1–15.

    Article  Google Scholar 

  • Wallach, H. (1935). Über visuell wahrgenommene bewegungsrichtung. Psychologische Forschung, 20, 325–380.

    Article  Google Scholar 

  • Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nature neuroscience, 5(6), 598–604.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Xu, W., Wang, Z., Takagaki, K., Li, B., Wu, J. Y. (2012). Interactions between two propagating waves in rat visual cortex. Neuroscience, 216, 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J. Y., Huang, X., & Zhang, C. (2008a). Propagating waves of activity in the neocortex: What they are, what they do. The Neuroscientist, 14(5), 487–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Hamaguchi, K., & Si, Amari. (2008b). Dynamics and computation of continuous attractors. Neural computation, 20(4), 994–1025.

    Article  PubMed  Google Scholar 

  • Xie, X., Hahnloser, R. H., & Seung, H. S. (2002). Double-ring network model of the head-direction system. Physical Review E, 66(4), 041902.

    Article  Google Scholar 

  • Xu, W., Huang, X., Takagaki, K., et al. (2007). Compression and reflection of visually evoked cortical waves. Neuron, 55(1), 119–129.

    Article  PubMed  PubMed Central  Google Scholar 

  • York, L. C., & van Rossum, M. C. (2009). Recurrent networks with short term synaptic depression. Journal of computational neuroscience, 27(3), 607.

    Article  PubMed  Google Scholar 

  • Zanos, T. P., Mineault, P. J., Nasiotis, K. T., et al. (2015). A sensorimotor role for traveling waves in primate visual cortex. Neuron, 85(3), 615–627.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K. (1996). Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. Journal of Neuroscience, 16(6), 2112–2126.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH BRAIN 1R01EB029847 and NSF DMS-2207700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary P Kilpatrick.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Additional information

Action Editor: Nicolas Brunel

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, S., Kilpatrick, Z.P. Representing stimulus motion with waves in adaptive neural fields. J Comput Neurosci 52, 145–164 (2024). https://doi.org/10.1007/s10827-024-00869-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-024-00869-z

Keywords

Navigation