Skip to main content
Log in

Modelling acute and lasting effects of tDCS on epileptic activity

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Transcranial Direct brain stimulation (tDCS) is commonly used in order to modulate cortical networks activity during physiological processes through the application of weak electrical fields with scalp electrodes. Cathodal stimulation has been shown to decrease brain excitability in the context of epilepsy, with variable success. However, the cellular mechanisms responsible for the acute and the long-lasting effect of tDCS remain elusive. Using a novel approach of computational modeling that combines detailed but functionally integrated neurons we built a physiologically-based thalamocortical column. This model comprises 10,000 individual neurons made of pyramidal cells, and 3 types of gamma-aminobutyric acid (GABA) -ergic cells (VIP, PV, and SST) respecting the anatomy, layers, projection, connectivity and neurites orientation. Simulating realistic electric fields in term of intensity, main results showed that 1) tDCS effects are best explained by modulation of the presynaptic probability of release 2) tDCS affects the dynamic of cortical network only if a sufficient number of neurons are modulated 3)VIP GABAergic interneurons of the superficial layer of the cortex are especially affected by tDCS 4) Long lasting effect depends on glutamatergic synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Wendling.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Action Editor: Steven J. Schiff

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denoyer, Y., Merlet, I., Wendling, F. et al. Modelling acute and lasting effects of tDCS on epileptic activity. J Comput Neurosci 48, 161–176 (2020). https://doi.org/10.1007/s10827-020-00745-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-020-00745-6

Keywords

Navigation