Skip to main content
Log in

A working memory model for serial order that stores information in the intrinsic excitability properties of neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Models for temporary information storage in neuronal populations are dominated by mechanisms directly dependent on synaptic plasticity. There are nevertheless other mechanisms available that are well suited for creating short-term memories. Here we present a model for working memory which relies on the modulation of the intrinsic excitability properties of neurons, instead of synaptic plasticity, to retain novel information for periods of seconds to minutes. We show that it is possible to effectively use this mechanism to store the serial order in a sequence of patterns of activity. For this we introduce a functional class of neurons, named gate interneurons, which can store information in their membrane dynamics and can literally act as gates routing the flow of activations in the principal neurons population. The presented model exhibits properties which are in close agreement with experimental results in working memory. Namely, the recall process plays an important role in stabilizing and prolonging the memory trace. This means that the stored information is correctly maintained as long as it is being used. Moreover, the working memory model is adequate for storing completely new information, in time windows compatible with the notion of “one-shot” learning (hundreds of milliseconds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature Neuroscience, 3(Suppl), 1178–1183.

    Article  PubMed  CAS  Google Scholar 

  • Aguiar, P., Sousa, M., & Lima, D. (2010). NMDA channels together with L-type calcium currents and calcium-activated nonspecific cationic currents are sufficient to generate windup in WDR neurons. Journal of Neurophysiology, 104, 1155–1166.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, A., de Curtis, M., & Llinas, R. (1990). Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. Proceedings of the National Academy of Sciences of the United States of America, 87, 9280–9284.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Bal, T., & McCormick, D. A. (1993). Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. The Journal of Physiology, 468, 669–691.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. The Journal of Physiology, 232, 331–356.

    PubMed  CAS  Google Scholar 

  • Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: a recurrent neural network model. Psychology Review, 113, 201–233.

    Article  Google Scholar 

  • Burnashev, N., Zhou, Z., Neher, E., & Sakmann, B. (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. The Journal of Physiology, 485(Pt 2), 403–418.

    PubMed  CAS  Google Scholar 

  • Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain, 125, 935–951.

    Article  PubMed  Google Scholar 

  • Crasto, C. J., Marenco, L. N., Liu, N., Morse, T. M., Cheung, K. H., Lai, P. C., et al. (2007). SenseLab: new developments in disseminating neuroscience information. Briefings in Bioinformatics, 8, 150–162.

    Article  PubMed  CAS  Google Scholar 

  • Dehaene, S., Changeux, J. P., & Nadal, J. P. (1987). Neural networks that learn temporal sequences by selection. Proceedings of the National Academy of Sciences of the United States of America, 84, 2727–2731.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., Babloyantz, A., & Sejnowski, T. J. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., Contreras, D., Sejnowski, T. J., & Steriade, M. (1994). A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of Neurophysiology, 72, 803–818.

    PubMed  CAS  Google Scholar 

  • Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3(Suppl), 1184–1191.

    Article  PubMed  CAS  Google Scholar 

  • Fall, C. P., & Rinzel, J. (2006). An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. Journal of Computational Neuroscience, 20, 97–107.

    Article  PubMed  Google Scholar 

  • Feldmeyer, D., Egger, V., Lubke, J., & Sakmann, B. (1999). Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex. The Journal of Physiology, 521(Pt 1), 169–190.

    Article  PubMed  CAS  Google Scholar 

  • Fransen, E., Alonso, A. A., & Hasselmo, M. E. (2002). Simulations of the role of the muscarinic-activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. Journal of Neuroscience, 22, 1081–1097.

    PubMed  CAS  Google Scholar 

  • Fransen, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E., & Alonso, A. A. (2006). Mechanism of graded persistent cellular activity of entorhinal cortex layer v neurons. Neuron, 49, 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, W. G., & Robinson, J. (1992). Statistical analysis of the dynamics of a sparse associative memory. Neural Networks, 5, 645–661.

    Article  Google Scholar 

  • Grashow, R., Brookings, T., & Marder, E. (2010). Compensation for variable intrinsic neuronal excitability by circuit-synaptic interactions. Journal of Neuroscience, 30, 9145–9156.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, T. T., McFarland, J. M., Berberich, S., Sakmann, B., & Mehta, M. R. (2012). Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo. Nature Neuroscience, 15, 1531–1538.

    Article  PubMed  CAS  Google Scholar 

  • Haj-Dahmane, S., & Andrade, R. (1999). Muscarinic receptors regulate two different calcium-dependent non-selective cation currents in rat prefrontal cortex. European Journal of Neuroscience, 11, 1973–1980.

    Article  PubMed  CAS  Google Scholar 

  • Herz, A. V., Li, Z., & van Hemmen, J. L. (1991). Statistical mechanics of temporal association in neural networks with transmission delays. Physical Review Letters, 66, 1370–1373.

    Article  PubMed  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hyde, R. A., & Strowbridge, B. W. (2012). Mnemonic representations of transient stimuli and temporal sequences in the rodent hippocampus in vitro. Nature Neuroscience, 15, 1430–1438.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. B., & Scharfman, H. E. (1996). Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. Journal of Neurophysiology, 76, 601–616.

    PubMed  CAS  Google Scholar 

  • Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. Journal of Neuroscience, 10, 3178–3182.

    PubMed  CAS  Google Scholar 

  • Jensen, O., Idiart, M. A., & Lisman, J. E. (1996). Physiologically realistic formation of autoassociative memory in networks with theta/gamma oscillations: role of fast NMDA channels. Learning and Memory, 3, 243–256.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294, 1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Klink, R., & Alonso, A. (1997). Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex. Hippocampus, 7, 571–583.

    Article  PubMed  CAS  Google Scholar 

  • Koene, R. A., & Hasselmo, M. E. (2007). First-in-first-out item replacement in a model of short-term memory based on persistent spiking. Cerebral Cortex, 17, 1766–1781.

    Article  PubMed  Google Scholar 

  • Koene, R. A., & Hasselmo, M. E. (2008). Consequences of parameter differences in a model of short-term persistent spiking buffers provided by pyramidal cells in entorhinal cortex. Brain Research, 1202, 54–67.

    Article  PubMed  CAS  Google Scholar 

  • Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.

    Article  PubMed  CAS  Google Scholar 

  • Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z., & Golowasch, J. (1996). Memory from the dynamics of intrinsic membrane currents. Proceedings of the National Academy of Sciences of the United States of America, 93, 13481–13486.

    Article  PubMed  CAS  Google Scholar 

  • McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68, 1384–1400.

    PubMed  CAS  Google Scholar 

  • Mozzachiodi, R., & Byrne, J. H. (2010). More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory. Trends in Neurosciences, 33, 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, G. A., Botond, G., Borhegyi, Z., Plummer, N. W., Freund, T. F., & Hajos, N. (2012). DAG-sensitive and Ca(2+) permeable TRPC6 channels are expressed in dentate granule cells and interneurons in the hippocampal formation. Hippocampus.

  • Otis, T. S., De Koninck, Y., & Mody, I. (1993). Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. The Journal of Physiology, 463, 391–407.

    PubMed  CAS  Google Scholar 

  • Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7, 1345–1352.

    Article  PubMed  CAS  Google Scholar 

  • Suh, J., Rivest, A. J., Nakashiba, T., Tominaga, T., & Tonegawa, S. (2011). Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science, 334, 1415–1420.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, A. M., West, D. C., Wang, Y., & Bannister, A. P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2–5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. Cerebral Cortex, 12, 936–953.

    Article  PubMed  Google Scholar 

  • Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus. Cambridge: CUP.

    Book  Google Scholar 

  • White, O. L., Lee, D. D., & Sompolinsky, H. (2004). Short-term memory in orthogonal neural networks. Physical Review Letters, 92, 148102.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011. Eduardo Conde-Sousa was supported by the grant SFRH/BD/65633/2009 from FCT, co-financed by European Social Fund under the program POPH of the National Strategic Reference Framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Aguiar.

Additional information

Action Editor: A. Borst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde-Sousa, E., Aguiar, P. A working memory model for serial order that stores information in the intrinsic excitability properties of neurons. J Comput Neurosci 35, 187–199 (2013). https://doi.org/10.1007/s10827-013-0447-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0447-7

Keywords

Navigation