Skip to main content
Log in

Conflicting effects of excitatory synaptic and electric coupling on the dynamics of square-wave bursters

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Using two-cell and 50-cell networks of square-wave bursters, we studied how excitatory coupling of individual neurons affects the bursting output of the network. Our results show that the effects of synaptic excitation vs. electrical coupling are distinct. Increasing excitatory synaptic coupling generally increases burst duration. Electrical coupling also increases burst duration for low to moderate values, but at sufficiently strong values promotes a switch to highly synchronous bursts where further increases in electrical or synaptic coupling have a minimal effect on burst duration. These effects are largely mediated by spike synchrony, which is determined by the stability of the in-phase spiking solution during the burst. Even when both coupling mechanisms are strong, one form (in-phase or anti-phase) of spike synchrony will determine the burst dynamics, resulting in a sharp boundary in the space of the coupling parameters. This boundary exists in both two cell and network simulations. We use these results to interpret the effects of gap-junction blockers on the neuronal circuitry that underlies respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57, 413–439.

    PubMed  CAS  Google Scholar 

  • Best, J., Borisyuk, A., Rubin, J., Terman, D., & Wechselberger, M. (2005). The dynamic range of bursting in a model respiratory pacemaker network. SIAM Journal on Applied Dynamical Systems, 4, 1107–1139.

    Article  Google Scholar 

  • Bou-Flores, C., & Berger, A. J. (2001). Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. Journal of Neurophysiology, 85, 1543–1551.

    PubMed  CAS  Google Scholar 

  • Butera, R. J., Jr., Rinzel, J., & Smith, J. C. (1999). Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82, 382–397.

    PubMed  Google Scholar 

  • De Vries, G., Sherman, A., & Zhu, H. R. (1998). Diffusively coupled bursters: effects of cell heterogeneity. Bulletin of Mathematical Biology, 60, 1167–1200.

    Article  PubMed  Google Scholar 

  • Ermentrout, B. (2002). Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM.

    Book  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2000). Neural excitability, spiking, and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.

    Article  Google Scholar 

  • Komendantov, A. O., & Canavier, C. C. (2002). Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony. Journal of Neurophysiology, 87, 1526–1541.

    PubMed  CAS  Google Scholar 

  • Purvis, L. K., Smith, J. C., Koizumi, H., & Butera, R. J. (2007). Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. Journal of Neurophysiology, 97, 1515–1526.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. In B. D. Sleeman & R. J. Jarvis (Eds.), Lecture notes in mathematics, vol. 1151 (pp. 304–316). Berlin: Springer.

    Google Scholar 

  • Sherman, A. (1994). Anti-phase, asymmetric and aperiodic oscillations in excitable cells–I. Coupled bursters. Bulletin of Mathematical Biology, 56, 811–835.

    PubMed  CAS  Google Scholar 

  • Sherman, A., & Rinzel, J. (1991). Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophysical Journal, 59, 547–559.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, A., & Rinzel, J. (1992). Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proceedings of the National Academy of Sciences of the United States of America, 89, 2471–2474.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, I. C., Chon, K. H., & Rodriguez, M. N. (2003). Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat. Journal of Neurophysiology, 89, 135–149.

    Article  PubMed  Google Scholar 

  • Wright, T. M., & Butera, R. J. (2006a). Effects of electrical coupling on excitatory coupled pacemaker neurons in the pre-Botzinger complex. Proceedings of 15th Annual Computational Neuroscience Meeting (CNS 2006), July 16–20, 2006. Scotland: Edinburgh.

    Google Scholar 

  • Wright, T. M., & Butera, R. J. (2006b) Modeling study of the dynamical effects of electrical coupling on pre-Botzinger complex neurons. Program No 63522006, Society for Neuroscience

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01-HL088886) and the National Science Foundation IGERT Program (DGE-0333411). M. Wright acknowledges A. Olypher for help with Matlab analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Butera Jr.

Additional information

Action Editor: Frances K. Skinner

Natalia Toporikova and Tzu-Hsin Tsao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toporikova, N., Tsao, TH., Wright, T.M. et al. Conflicting effects of excitatory synaptic and electric coupling on the dynamics of square-wave bursters. J Comput Neurosci 31, 701–711 (2011). https://doi.org/10.1007/s10827-011-0340-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0340-1

Keywords

Navigation