Skip to main content
Log in

Sharpening of directional selectivity from neural output of rabbit retina

Journal of Computational Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 02 December 2010

Abstract

The estimation of motion direction from time varying retinal images is a fundamental task of visual systems. Neurons that selectively respond to directional visual motion are found in almost all species. In many of them already in the retina direction selective neurons signal their preferred direction of movement. Scientific evidences suggest that direction selectivity is carried from the retina to higher brain areas. Here we adopt a simple integrate-and-fire neuron model, inspired by recent work of Casti et al. (2008), to investigate how directional selectivity changes in cells postsynaptic to directional selective retinal ganglion cells (DSRGC). Our model analysis shows that directional selectivity in the postsynaptic cells increases over a wide parameter range. The degree of directional selectivity positively correlates with the probability of burst-like firing of presynaptic DSRGCs. Postsynaptic potentials summation and spike threshold act together as a temporal filter upon the input spike train. Prior to the intricacy of neural circuitry between retina and higher brain areas, we suggest that sharpening is a straightforward result of the intrinsic spiking pattern of the DSRGCs combined with the summation of excitatory postsynaptic potentials and the spike threshold in postsynaptic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

DSRGC:

direction selective retinal ganglion cell

LGN:

lateral geniculate nucleus

SPN:

simulated postsynaptic neuron

EPSP:

excitatory postsynaptic potential

IPSP:

inhibitory postsynaptic potential

DSi :

Directional Selectivity index

AHP:

After-Hyperpolarization

TFR:

(spike) transfer ratio

iS:

Index of sharpening

AOS:

Accessory Optic System

References

  • Ackert, J. M., Wu, S. H., Lee, J. C., Abrams, J., Hu, E. H., Perlman, I., et al. (2006). Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. The Journal of Neuroscience, 26(16), 4206–4215.

    Article  PubMed  CAS  Google Scholar 

  • Alitto, H. J., & Usrey, W. M. (2005). Dynamic properties of thalamic neurons for vision. Progress in Brain Research, 149, 83–90.

    Article  PubMed  Google Scholar 

  • Amthor, F. R., Takahashi, E. S., & Oyster, C. W. (1989). Morphologies of rabbit retinal ganglion cells with complex receptive fields. The Journal of Comparative Neurology, 280(1), 97–121.

    Article  PubMed  CAS  Google Scholar 

  • Bair, W. (1999). Spike timing in the mammalian visual system. Current Opinion in Neurobiology, 9, 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B., Hill, R. M., & Levick, W. R. (1964). Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. The Journal of Physiology, 173, 377–407.

    PubMed  CAS  Google Scholar 

  • Barlow, H. B., Hill, R. M., & Levick, W. R. (1965). The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology (London), 178, 477.

    CAS  Google Scholar 

  • Blitz, D. M., & Regehr, W. G. (2005). Timing and specificity of feed-forward inhibition within the LGN. Neuron, 45(6), 917–928.

    Article  PubMed  CAS  Google Scholar 

  • Buhl, E. H., & Peichl, L. (1986). Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system. The Journal of Comparative Neurology, 253(2), 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Carandini, M., & Ferster, D. (2000). Membrane potential and Firing rate in cat primary visual cortex. The Journal of Neuroscience, 20(1), 470–484.

    PubMed  CAS  Google Scholar 

  • Carandini, M., Horton, J. C., & Sincich, L. C. (2007). Thalamic filtering of retinal spike trains by postsynaptic summation. Journal of Vision, 7(14), 1–11.

    Article  PubMed  Google Scholar 

  • Casti, A., Hayot, F., Xiao, Y., & Kaplan, E. (2008). A simple model of retina-LGN transmission. Journal of Computational Neuroscience. doi:10.1007/s10827-007-0053-7.

    PubMed  Google Scholar 

  • Cleland, B. G., & Lewick, W. R. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. The Journal of Physiology, 240, 421–456.

    PubMed  CAS  Google Scholar 

  • Cleland, B. G., Lewick, W. R., Morstyn, R., & Wagner, H. G. (1976). Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex. The Journal of Physiology, 255, 299–320.

    PubMed  CAS  Google Scholar 

  • Damjanovic, I., Maximova, E., & Maximov, V. (2009). Receptive field sizes of direction-selective units in the fish tectum. Journal of Integrative Neuroscience, 8(1), 77–93.

    Article  PubMed  Google Scholar 

  • Dann, J. F., & Buhl, E. H. (1987). Retinal ganglion cells projecting to the accessory optic system in the rat. The Journal of Comparative Neurology, 262(1), 141–158.

    Article  PubMed  CAS  Google Scholar 

  • Devries, S. H., & Baylor, D. A. (1997). Mosaic arrangement of ganglion cell receptive fields in rabbit retina. Journal of Neurophysiology, 78(4), 2048–2060.

    PubMed  CAS  Google Scholar 

  • Godwin, D. W., Vaughan, J. W., & Sherman, S. M. (1996). Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. Journal of Neurophysiology, 76, 1800–1816.

    CAS  Google Scholar 

  • Grasse, K. L., Cynader, M. S., & Douglas, R. M. (1984). Alterations in response properties in the lateral and dorsal terminal nuclei of the cat accessory optic system following visual cortex lesions. Experimental Brain Research, 55(1), 69–80.

    Article  CAS  Google Scholar 

  • Guido, W., Lu, S. M., Vaughan, J. W., Godwin, D. W., & Sherman, S. M. (1995). Receiver operating characteristic (ROC) analysis of neurons in the cat’s lateral geniculate nucleus during tonic and burst response mode. Visual Neuroscience, 12, 723–741.

    Article  PubMed  CAS  Google Scholar 

  • He, S., & Masland, R. H. (1998). ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation. Visual Neuroscience, 15(2), 369–375.

    Article  PubMed  Google Scholar 

  • Hoffmann, K. P., & Distler, C. (1989). Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey. Journal of Neurophysiology, 62(2), 416–428.

    PubMed  CAS  Google Scholar 

  • Huberman, A. D., Wei, W., Elstrott, J., Stafford, B. K., Feller, M. B., & Barres, B. A. (2009). Genetic identification of an On-Off direction- selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. doi:10.1016/j.neuron.2009.04.014.

  • Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. Oxford: Oxford University Press.

    Google Scholar 

  • Jagadeesh, B., Wheat, H. S., Kontsevich, L. L., Tyler, C. R., & Ferster, D. (1997). Direction selectivity of synaptic potentials in simple cells of the cat visual cortex. Journal of Neurophysiology, 78, 2772–2789.

    PubMed  CAS  Google Scholar 

  • Jensen, R. J., & Devoe, R. D. (1983). Comparisons of directionally selective with other ganglion cells of turtle retina: intracellular recording and staining. The Journal of Comparative Neurology, 17(3), 271–287.

    Article  Google Scholar 

  • Kara, P. A., & Reid, R. C. (2003). Efficacy of retinal spikes in driving cortical responses. The Journal of Neuroscience, 23(24), 8547–8557.

    PubMed  CAS  Google Scholar 

  • Kim, I. J., Zhang, Y., Yamagata, M., Meister, M., & Sanes, J. R. (2008). Molecular identification of a retinal cell type that responds to upward motion. Nature, 452, 478–482.

    Article  PubMed  CAS  Google Scholar 

  • Levick, W. R. (1967). Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina. The Journal of Physiology, 188(3), 285–307.

    PubMed  CAS  Google Scholar 

  • Levick, W. R., Oyster, C. W., & Takahashi, E. (1969). Rabbit lateral geniculate nucleus: sharpener of directional information. Science, 165(3894), 712–714.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S. M., Guido, W., & Sherman, S. M. (1992). Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2 conductance. Journal of Neurophysiology, 68, 1285–1298.

    Google Scholar 

  • Michael, C. R. (1966). Receptive fields of opponent color units in the optic nerve of the ground squirrel. Science, 152(3725), 1095–1097.

    Article  PubMed  CAS  Google Scholar 

  • Mustari, M. J., & Fuchs, A. F. (1989). Response properties of single units in the lateral terminal nucleus of the accessory optic system in the behaving primate. Journal of Neurophysiology, 61(6), 1207–1220.

    PubMed  CAS  Google Scholar 

  • Oyster, C. W. (1968). The analysis of image motion by the rabbit retina. The Journal of Physiology, 199, 613–635.

    PubMed  CAS  Google Scholar 

  • Priebe, N., & Ferster, D. (2005). Direction selectivity of excitation and inhibitionin simple cells of the cat primary visual cortex. Neuron, 45, 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Priebe, N., & Ferster, D. (2008). Inhibition, spike threshold and stimulus selectivity in primary visual cortex. Neuron. doi:10.1016/j.neuron.2008.02.005.

    PubMed  Google Scholar 

  • Pu, M. L., & Amthor, F. R. (1990). Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit. The Journal of Comparative Neurology, 302(3), 657–674.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. Journal of Neurophysiology, 30, 1138–1168.

    PubMed  CAS  Google Scholar 

  • Rathbun, D. L., Alitto, H. J., Weyand, T. G., & Usrey, W. M. (2007). Interspike interval analysis of retinal ganglion cell receptive fields. Journal of Neurophysiology, 98, 911–919.

    Article  PubMed  Google Scholar 

  • Sincich, L. C., Adams, D. L., Economides, J. R., & Horton, J. C. (2007). Transmission of spike trains at retinogeniculate synapse. The Journal of Neuroscience, 27(10), 2683–2692.

    Article  PubMed  CAS  Google Scholar 

  • Soodak, R. E., & Simpson, J. I. (1988). The accessory optic system of rabbit. I. Basic visual response properties. Journal of Neurophysiology, 60, 2037–2054.

    PubMed  CAS  Google Scholar 

  • Stanford, L. R., & Sherman, S. M. (1984). Structure/function relationships of retinal ganglion cells in the cat. Brain Research, 297(2), 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Swadlow, H. A., & Gusev, A. G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Swadlow, H. A., Gusev, A. G., & Bezdudnaya, T. (2002). Activation of a cortical column by a thalamocortical impulse (pdf). The Journal of Neuroscience, 22(17), 7766–7773.

    PubMed  CAS  Google Scholar 

  • Taylor, W. R., & Vaney, D. I. (2002). Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. The Journal of Neuroscience, 22(17), 7712–7720.

    PubMed  CAS  Google Scholar 

  • Usrey, W. M. (2002). Spike timing and visual processing in the retinogeniculocortical pathway. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 1729–1737.

    Article  PubMed  Google Scholar 

  • Usrey, W. M., Reppas, J. B., & Reid, R. C. (1998). Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature, 395(6700), 384–387.

    Article  PubMed  CAS  Google Scholar 

  • Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82, 3527–3540.

    PubMed  CAS  Google Scholar 

  • van der Togt, C., van der Want, J., & Schmidt, M. (1993). Segregation of direction selective neurons and synaptic organization of inhibitory intranuclear connections in the medial terminal nucleus of the rat: an electrophysiological and immunoelectron microscopical study. The Journal of Comparative Neurology, 338(2), 175–192.

    Article  PubMed  Google Scholar 

  • Vaney, D. I., Levick, W. R., & Thibos, L. N. (1981a). Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties. Experimental Brain Research, 44(1), 27–33.

    Article  CAS  Google Scholar 

  • Vaney, D. I., Peichl, L., Wassle, H., & Illing, R. B. (1981b). Almost all ganglion cells in the rabbit retina project to the superior colliculus. Brain Research, 212(2), 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Volgushev, M., Pernberg, J., & Eysel, U. T. (2000). Comparision of the selectivity of the postsynaptic potentials and spike responses in cat visual cortex. The European Journal of Neuroscience, 12, 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Weng, S., Sun, W., & He, S. (2005). Identification of ON–OFF direction-selective ganglion cells in the mouse retina. The Journal of Physiology, 562(3), 915–923.

    Article  PubMed  CAS  Google Scholar 

  • Wörgötter, F., & Koch, C. (1991). A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. The Journal of Neuroscience, 11(7), 1959–1979.

    PubMed  Google Scholar 

  • Yonehara, K., Ishikane, H., Sakuta, H., Shintani, T., Nakamura-Yonehara, K., et al. (2009). Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS ONE, 4(1), e4320.

    Article  PubMed  Google Scholar 

  • Zeck, G. M., & Masland, R. H. (2007). Spike train signatures of retinal ganglion cell types. The European Journal of Neuroscience, 26, 367–380.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel Vasile Martiniuc.

Additional information

Action Editor: Catherine E. Carr

An erratum to this article can be found at http://dx.doi.org/10.1007/s10827-010-0294-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martiniuc, A.V., Knoll, A. Sharpening of directional selectivity from neural output of rabbit retina. J Comput Neurosci 30, 409–426 (2011). https://doi.org/10.1007/s10827-010-0266-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0266-z

Keywords

Navigation