Skip to main content
Log in

Maximum decoding abilities of temporal patterns and synchronized firings: application to auditory neurons responding to click trains and amplitude modulated white noise

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Simultaneous recordings of an increasing number of neurons have recently become available, but few methods have been proposed to handle this activity. Here, we extract and investigate all the possible temporal neural activity patterns based on synchronized firings of neurons recorded on multiple electrodes, or based on bursts of single-electrode activity in cat primary auditory cortex. We apply this to responses to periodic click trains or sinusoïdal amplitude modulated noise by obtaining for each pattern its temporal modulation transfer function. An algorithm that maximizes the mutual information between all patterns and stimuli subsequently leads to the identification of patterns that optimally decode modulation frequency (MF). We show that stimulus information contained in multi-electrode synchronized firing is not redundant with single-electrode firings and leads to improved efficiency of MF decoding. We also show that the combined use of firing rate and temporal codes leads to a better discrimination of the MF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abeles, M. (1982a). Local cortical circuits: An electrophysiological study. Berlin: Springer.

    Google Scholar 

  • Abeles, M. (1982b). Role of the cortical neuron: Integrator or coincidence detector? Israel Journal of Medical Sciences, 18(1), 83–92.

    CAS  Google Scholar 

  • Abeles, M., & Goldstein, M. H,. Jr. (1970). Functional architecture in cat primary auditory cortex: Columnar organization and organization according to depth. Journal of Neurophysiology, 33(1), 172–187.

    CAS  PubMed  Google Scholar 

  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proc. 20th Int. Conf. Very Large Data Bases, VLDB.

  • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Eleventh international conference on data engineering.

  • Ahissar, M., Ahissar, E., et al. (1992). Encoding of sound-source location and movement: Activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. Journal of Neurophysiology, 67(1), 203–215.

    CAS  PubMed  Google Scholar 

  • Arata, A., Hernandez, Y. M., et al. (2000). Transient configurations of baroresponsive respiratory-related brainstem neuronal assemblies in the cat. Journal of Physiology, 525(Pt 2), 509–530. doi:10.1111/j.1469-7793.2000.t01-1-00509.x.

    CAS  PubMed  Google Scholar 

  • Babadi, B. (2004). Stimulus transmission by tonic and burst responses in a minimal model of thalamic circuit. Neurocomputing, 58–60, 7–12. doi:10.1016/j.neucom.2004.01.015.

    Google Scholar 

  • Baker, S. N., & Gerstein, G. L. (2000). Improvements to the sensitivity of gravitational clustering for multiple neuron recordings. Neural Computation, 12(11), 2597–2620. doi:10.1162/089976600300014863.

    CAS  PubMed  Google Scholar 

  • Barbieri, R., Frank, L. M., et al. (2004). Dynamic analyses of information encoding in neural ensembles. Neural Computation, 16(2), 277–307. doi:10.1162/089976604322742038.

    PubMed  Google Scholar 

  • Bienenstock, E. (1995). A model of neocortex. Network: Computation in Neural systems, 6, 179–224.

    Google Scholar 

  • Bodegard, A., Geyer, S., et al. (2001). Hierarchical processing of tactile shape in the human brain. Neuron, 31(2), 317–328. doi:10.1016/S0896-6273(01)00362-2.

    CAS  PubMed  Google Scholar 

  • Bohlhalter, S., Fretz, C., et al. (2002). Hierarchical versus parallel processing in tactile object recognition: A behavioural-neuroanatomical study of aperceptive tactile agnosia. Brain, 125(Pt 11), 2537–2548. doi:10.1093/brain/awf245.

    CAS  PubMed  Google Scholar 

  • Borst, A., & Theunissen, F. E. (1999). Information theory and neural coding. Nature Neuroscience, 2(11), 947–957. doi:10.1038/14731.

    CAS  PubMed  Google Scholar 

  • Bourien, J., Bartolomei, F., et al. (2005). A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy. Clinical Neurophysiology, 116(2), 443–455. doi:10.1016/j.clinph.2004.08.010.

    CAS  PubMed  Google Scholar 

  • Brown, E. N., Frank, L. M., et al. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18(18), 7411–7425.

    CAS  PubMed  Google Scholar 

  • Brown, E. N., Kass, R. E., et al. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461. doi:10.1038/nn1228.

    CAS  PubMed  Google Scholar 

  • Buracas, G. T., Zador, A. M., et al. (1998). Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron, 20(5), 959–969. doi:10.1016/S0896-6273(00)80477-8.

    CAS  PubMed  Google Scholar 

  • Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological Cybernetics, 95(1), 1–19. doi:10.1007/s00422-006-0068-6.

    CAS  PubMed  Google Scholar 

  • Couvreur, C., & Bresler, Y. (2000). On the optimality of the backward greedy algorithm for the subset selection problem. SIAM Journal on Matrix Analysis and Applications, 21(3), 797–808. doi:10.1137/S0895479898332928.

    Google Scholar 

  • Cover, T.M., & Thomas, J.A. (1991). Elements of information theory: John Wiley and Sons.

  • Dau, T., Kollmeier, B., et al. (1997). Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America, 102(5 Pt 1), 2892–2905. doi:10.1121/1.420344.

    CAS  PubMed  Google Scholar 

  • Dayhoff, J. E. (1994). Synchrony detection in neural assemblies. Biological Cybernetics, 71(3), 263–270. doi:10.1007/BF00202765.

    CAS  PubMed  Google Scholar 

  • Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms : Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265–282.

    Google Scholar 

  • Dickson, J. W., & Gerstein, G. L. (1974). Interactions between neurons in auditory cortex of the cat. Journal of Neurophysiology, 37(6), 1239–1261.

    CAS  PubMed  Google Scholar 

  • Diesmann, M., Gewaltig, M. O., et al. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402(6761), 529–533. doi:10.1038/990101.

    CAS  PubMed  Google Scholar 

  • Dunn, O. J., & Clark, V. A. (1969). Correlation coefficients based on the same individuals. Journal of the American Statistical Association, 64, 366–377. doi:10.2307/2283746.

    Google Scholar 

  • Eggermont, J. J. (1991). Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hearing Research, 56(1–2), 153–167. doi:10.1016/0378-5955(91)90165-6.

    CAS  PubMed  Google Scholar 

  • Eggermont, J. J. (1994). Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hearing Research, 74(1–2), 51–66. doi:10.1016/0378-5955(94)90175-9.

    CAS  PubMed  Google Scholar 

  • Eggermont, J. J. (1998). Is there a neural code? Neuroscience and Biobehavioral Reviews, 22(2), 355–370. doi:10.1016/S0149-7634(97)00021-3.

    CAS  PubMed  Google Scholar 

  • Eggermont, J. J. (1999). The magnitude and phase of temporal modulation transfer functions in cat auditory cortex. Journal of Neuroscience, 19(7), 2780–2788.

    CAS  PubMed  Google Scholar 

  • Eggermont, J. J. (2002). Temporal modulation transfer functions in cat primary auditory cortex: Separating stimulus effects from neural mechanisms. Journal of Neurophysiology, 87(1), 305–321.

    PubMed  Google Scholar 

  • Eggermont, J. J. (2006). Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. Journal of Neurophysiology, 96(2), 746–764.

    PubMed  Google Scholar 

  • Eggermont, J. J. (2007). Correlated neural activity as the driving force for functional changes in auditory cortex. Hearing Research, 229(1–2), 69–80. doi:10.1016/j.heares.2007.01.008.

    PubMed  Google Scholar 

  • Eggermont, J. J., & Smith, G. M. (1996). Neural connectivity only accounts for a small part of neural correlation in auditory cortex. Experimental Brain Research, 110(3), 379–391. doi:10.1007/BF00229138.

    CAS  Google Scholar 

  • Engineer, C. T., Perez, C. A., et al. (2008). Cortical activity patterns predict speech discrimination ability. Nature Neuroscience, 11(5), 603–608. doi:10.1038/nn.2109.

    CAS  PubMed  Google Scholar 

  • Espinosa, I. E., & Gerstein, G. L. (1988). Cortical auditory neuron interactions during presentation of 3-tone sequences: Effective connectivity. Brain Research, 450(1–2), 39–50. doi:10.1016/0006-8993(88)91542-9.

    CAS  PubMed  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex (New York, N.Y.), 1(1), 1–47. doi:10.1093/cercor/1.1.1-a.

    CAS  Google Scholar 

  • Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  • Fox, J. (2008). Applied regression, generalized linear models, and related methods: Sage.

  • Frostig, R. D., Gottlieb, Y., et al. (1983). The effects of stimuli on the activity and functional connectivity of local neuronal groups in the cat auditory cortex. Brain Research, 272(2), 211–221. doi:10.1016/0006-8993(83)90567-X.

    CAS  PubMed  Google Scholar 

  • Furukawa, S., & Middlebrooks, J. C. (2002). Cortical representation of auditory space: Information-bearing features of spike patterns. Journal of Neurophysiology, 87(4), 1749–1762.

    PubMed  Google Scholar 

  • Gaese, B. H., & Ostwald, J. (1995). Temporal coding of amplitude and frequency modulation in the rat auditory cortex. European Journal of Neuroscience, 7(3), 438–450. doi:10.1111/j.1460-9568.1995.tb00340.x.

    CAS  PubMed  Google Scholar 

  • Gehr, D. D., Komiya, H., et al. (2000). Neuronal responses in cat primary auditory cortex to natural and altered species-specific calls. Hearing Research, 150(1–2), 27–42. doi:10.1016/S0378-5955(00)00170-2.

    CAS  PubMed  Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., et al. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419. doi:10.1126/science.3749885.

    CAS  PubMed  Google Scholar 

  • Gerstein, G. L. (2004). Searching for significance in spatio-temporal firing patterns. Acta Neurobiologiae Experimentalis, 64(2), 203–207.

    PubMed  Google Scholar 

  • Gerstein, G. L., & Aertsen, A. M. (1985). Representation of cooperative firing activity among simultaneously recorded neurons. Journal of Neurophysiology, 54(6), 1513–1528.

    CAS  PubMed  Google Scholar 

  • Gerstein, G. L., & Kirkland, K. L. (2001). Neural assemblies: Technical issues, analysis, and modeling. Neural Networks, 14(6–7), 589–598. doi:10.1016/S0893-6080(01)00042-9.

    CAS  PubMed  Google Scholar 

  • Gerstein, G. L., Perkel, D. H., et al. (1978). Identification of functionally related neural assemblies. Brain Research, 140(1), 43–62. doi:10.1016/0006-8993(78)90237-8.

    CAS  PubMed  Google Scholar 

  • Gielen, C. C. A. M., Van den Boogaard, H. F. P., et al. (1988). Sensory interpretation of neural activity patterns. Mathematical Biosciences, 88(1), 15–35. doi:10.1016/0025-5564(88)90046-6.

    Google Scholar 

  • Giraud, A. L., Lorenzi, C., et al. (2000). Representation of the temporal envelope of sounds in the human brain. Journal of Neurophysiology, 84(3), 1588–1598.

    CAS  PubMed  Google Scholar 

  • Gleich, O., & Klump, G. M. (1995). Temporal modulation transfer functions in the European Starling (Sturnus vulgaris): II. Responses of auditory-nerve fibres. Hearing Research, 82(1), 81–92. doi:10.1016/0378-5955(94)00168-P.

    CAS  PubMed  Google Scholar 

  • Goense, J. B. M., Ratnam, R., et al. (2003). Stimulus transmission by tonic and burst responses in a minimal model of thalamic circuit. Neurocomputing, 52–54, 103–108.

    Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32(4), 613–636.

    CAS  PubMed  Google Scholar 

  • Goldstein, M. H. J., Kiang, N. Y.-S., et al. (1959). Response of the auditory cortex to repetitive acoustic stimuli. Journal of the Acoustical Society of America, 31, 356–364. doi:10.1121/1.1907724.

    Google Scholar 

  • Gourévitch, B., & Eggermont, J. J. (2007). Evaluating information transfer between auditory cortical neurons. Journal of Neurophysiology, 97(3), 2533–2543. doi:10.1152/jn.01106.2006.

    PubMed  Google Scholar 

  • Gourevitch, B., Le Bouquin Jeannes, R., et al. (2008). Temporal envelope processing in the human auditory cortex: Response and interconnections of auditory cortical areas. Hearing Research, 237(1–2), 1–18. doi:10.1016/j.heares.2007.12.003.

    PubMed  Google Scholar 

  • Grammont, F., & Riehle, A. (1999). Precise spike synchronization in monkey motor cortex involved in preparation for movement. Experimental Brain Research, 128(1–2), 118–122. doi:10.1007/s002210050826.

    CAS  Google Scholar 

  • Gray, C. M. (1999). The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron, 24(1), 31–47, 111–25.

    Google Scholar 

  • Grün, S., Diesmann, M., et al. (2002). Unitary events in multiple single-neuron spiking activity: I. Detection and significance. Neural Computation, 14(1), 43–80. doi:10.1162/089976602753284455.

    PubMed  Google Scholar 

  • Gütig, R., Aertsen, A., et al. (2003). Analysis of higher-order neuronal interactions based on conditional inference. Biological Cybernetics, 88(5), 352–359. doi:10.1007/s00422-002-0388-0.

    PubMed  Google Scholar 

  • Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182. doi:10.1162/153244303322753616.

    Google Scholar 

  • Hebb, D. (1949). The organization of behavior: Wiley.

  • Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82(2), 111–121. doi:10.1007/PL00007964.

    CAS  PubMed  Google Scholar 

  • Herrmann, M., Prugel-Bennett, A., et al. (1995). Analysis of synfire chains. Network: Computation in Neural systems, 6, 403–414.

    Google Scholar 

  • Hesselmans, G. H., & Johannesma, P. I. (1989). Spectro-temporal interpretation of activity patterns of auditory neurons. Mathematical Biosciences, 93(1), 31–51. doi:10.1016/0025-5564(89)90012-6.

    CAS  PubMed  Google Scholar 

  • Hesselmans, G. H., Van den Boogaard, H. F. P., et al. (1987). The characteristic functional of the peri-event stimulus ensemble. Mathematical Biosciences, 85(2), 211–230. doi:10.1016/0025-5564(87)90053-8.

    Google Scholar 

  • Hewitt, M. J., & Meddis, R. (1994). A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. Journal of the Acoustical Society of America, 95(4), 2145–2159. doi:10.1121/1.408676.

    CAS  PubMed  Google Scholar 

  • Hose, B., Langner, G., et al. (1987). Topographic representation of periodicities in the forebrain of the mynah bird: One map for pitch and rhythm? Brain Research, 422(2), 367–373. doi:10.1016/0006-8993(87)90946-2.

    CAS  PubMed  Google Scholar 

  • Izhikevich, E. M., Desai, N. S., et al. (2003). Bursts as a unit of neural information: Selective communication via resonance. Trends in Neurosciences, 26(3), 161–167. doi:10.1016/S0166-2236(03)00034-1.

    CAS  PubMed  Google Scholar 

  • Johannesma, P., Aertsen, A., et al. (1986). From synchrony to harmony: Ideas on the function of neural assemblies and on the interpretation of neural synchrony. In G. Palm & A. Aertsen (Eds.), Brain theory, pp. 25–47. Berlin: Springer-Verlag.

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis. New York: Springer.

    Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11793–11799. doi:10.1073/pnas.97.22.11793.

    CAS  PubMed  Google Scholar 

  • Kepecs, A., & Lisman, J. (2003). Information encoding and computation with spikes and bursts. Network: Comput Neural Syst, 14, 103–118. doi:10.1088/0954-898X/14/1/306.

    Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1999). Distributed representation of spectral and temporal information in rat primary auditory cortex. Hearing Research, 134(1–2), 16–28. doi:10.1016/S0378-5955(99)00061-1.

    CAS  PubMed  Google Scholar 

  • Kimpo, R. R., Theunissen, F. E., et al. (2003). Propagation of correlated activity through multiple stages of a neural circuit. Journal of Neuroscience, 23(13), 5750–5761.

    CAS  PubMed  Google Scholar 

  • Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273–324. doi:10.1016/S0004-3702(97)00043-X.

    Google Scholar 

  • Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent overview. GESTS International Transactions on Computer Science and Engineering, 32(1), 71–82.

    Google Scholar 

  • Langner, G., & Schreiner, C. E. (1988). Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. Journal of Neurophysiology, 60(6), 1799–1822.

    CAS  PubMed  Google Scholar 

  • Langner, G., Sams, M., et al. (1997). Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: Evidence from magnetoencephalography. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 181(6), 665–676. doi:10.1007/s003590050148.

    CAS  PubMed  Google Scholar 

  • Langner, G., Albert, M., et al. (2002). Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger). Hearing Research, 168(1–2), 110–130. doi:10.1016/S0378-5955(02)00367-2.

    PubMed  Google Scholar 

  • Lee, C. C., Imaizumi, K., et al. (2004). Concurrent tonotopic processing streams in auditory cortex. Cerebral Cortex (New York, N.Y.), 14(4), 441–451. doi:10.1093/cercor/bhh006.

    Google Scholar 

  • Levitt, J. B., Lund, J. S., et al. (1996). Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey. Behavioural Brain Research, 76(1–2), 5–19. doi:10.1016/0166-4328(95)00188-3.

    CAS  PubMed  Google Scholar 

  • Liang, L., Lu, T., et al. (2002). Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. Journal of Neurophysiology, 87(5), 2237–2261.

    PubMed  Google Scholar 

  • Liégeois-Chauvel, C., Trottier, S., et al. (1993). Organisation anatomique et fonctionnelle du cortex auditif chez l’homme. Revue de Neuropsychologie, 3(4), 453–477.

    Google Scholar 

  • Liégeois-Chauvel, C., Lorenzi, C., et al. (2004). Temporal envelope processing in the human left and right auditory cortices. Cerebral Cortex (New York, N.Y.), 14, 731–740. doi:10.1093/cercor/bhh033.

    Google Scholar 

  • Liley, D. T. J., & Wright, J. J. (1994). Intracortical connectivity of pyramidal and stellate cells: Estimates of synaptic densities and coupling symmetry. Network, 5, 175–189.

    Google Scholar 

  • Lindsey, B. G., & Gerstein, G. L. (2006). Two enhancements of the gravity algorithm for multiple spike train analysis. Journal of Neuroscience Methods, 150(1), 116–127. doi:10.1016/j.jneumeth.2005.06.019.

    PubMed  Google Scholar 

  • Lindsey, B. G., Hernandez, Y. M., et al. (1992). Dynamic reconfiguration of brain stem neural assemblies: Respiratory phase-dependent synchrony versus modulation of firing rates. Journal of Neurophysiology, 67(4), 923–930.

    CAS  PubMed  Google Scholar 

  • Lindsey, B. G., Morris, K. F., et al. (1997). Repeated patterns of distributed synchrony in neuronal assemblies. Journal of Neurophysiology, 78(3), 1714–1719.

    CAS  PubMed  Google Scholar 

  • Lindsey, B. G., Morris, K. F., et al. (2000). Respiratory neuronal assemblies. Respiration Physiology, 122(2–3), 183–196. doi:10.1016/S0034-5687(00)00158-4.

    CAS  PubMed  Google Scholar 

  • Lisman, J. E. (1997). Bursts as a unit of neural information: Making unreliable synapses reliable. Trends in Neurosciences, 20(1), 38–43. doi:10.1016/S0166-2236(96)10070-9.

    CAS  PubMed  Google Scholar 

  • Lu, T., Liang, L., et al. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience, 4(11), 1131–1138. doi:10.1038/nn737.

    CAS  PubMed  Google Scholar 

  • Lu, T., & Wang, X. (2004). Information content of auditory cortical responses to time-varying acoustic stimuli. Journal of Neurophysiology, 91(1), 301–313. doi:10.1152/jn.00022.2003.

    PubMed  Google Scholar 

  • Mannila, H., Toivonen, H., et al. (1997). Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1, 259–289. doi:10.1023/A:1009748302351.

    Google Scholar 

  • Mardia, K. V. (1972). Statistics of directional data. London: Academic.

    Google Scholar 

  • Mason, A., Nicoll, A., et al. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11(1), 72–84.

    CAS  PubMed  Google Scholar 

  • Mesgarani, N., David, S. V., et al. (2008). Phoneme representation and classification in primary auditory cortex. Journal of the Acoustical Society of America, 123(2), 899–909. doi:10.1121/1.2816572.

    PubMed  Google Scholar 

  • Milner, P. M. (1974). A model for visual shape recognition. Psychological Review, 81(6), 521–535. doi:10.1037/h0037149.

    CAS  PubMed  Google Scholar 

  • Morris, K. F., Shannon, R., et al. (2001). Changes in cat medullary neurone firing rates and synchrony following induction of respiratory long-term facilitation. Journal of Physiology, 532(Pt 2), 483–497. doi:10.1111/j.1469-7793.2001.0483f.x.

    CAS  PubMed  Google Scholar 

  • Morris, K. F., Baekey, D. M., et al. (2003). Invited review: Neural network plasticity in respiratory control. Journal of Applied Physiology, 94(3), 1242–1252.

    CAS  PubMed  Google Scholar 

  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and Its Applications, 9, 141–142. doi:10.1137/1109020.

    Google Scholar 

  • Nicoll, A., & Blakemore, C. (1990). Dual intracellular impalement in vitro reveals excitatory synaptic connections between pyramidal neurons in rat visual cortex. Journal of Physiology, 430, 15. Abstract of a conference.

    Google Scholar 

  • Nicoll, A., & Blakemore, C. (1993). Patterns of local connectivity in the neocortex. Neural Computation, 5, 665–680. doi:10.1162/neco.1993.5.5.665.

    Google Scholar 

  • Panzeri, S., Petersen, R. S., et al. (2001). The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 29(3), 769–777. doi:10.1016/S0896-6273(01)00251-3.

    CAS  PubMed  Google Scholar 

  • Patnaik, D., Sastry, P. S., et al. (2008). Inferring neuronal network connectivity from spike data: A temporal data mining approach. Science Progress, 16(1), 49–77.

    Google Scholar 

  • Pauluis, Q., & Baker, S. N. (2000). An accurate measure of the instantaneous discharge probability, with application to unitary joint-even analysis. Neural Computation, 12(3), 647–669. doi:10.1162/089976600300015736.

    CAS  PubMed  Google Scholar 

  • Perkel, D. H., & Bullock, T. H. (1968). Neural coding. NRP Bulletin, 6, 221–348.

    Google Scholar 

  • Petersen, R. S., Panzeri, S., et al. (2001). Population coding of stimulus location in rat somatosensory cortex. Neuron, 32(3), 503–514. doi:10.1016/S0896-6273(01)00481-0.

    CAS  PubMed  Google Scholar 

  • Reinagel, P., & Reid, R. C. (2000). Temporal coding of visual information in the thalamus. Journal of Neuroscience, 20(14), 5392–5400.

    CAS  PubMed  Google Scholar 

  • Rhode, W. S., & Greenberg, S. (1994). Encoding of amplitude modulation in the cochlear nucleus of the cat. Journal of Neurophysiology, 71(5), 1797–1825.

    CAS  PubMed  Google Scholar 

  • Rieke, F., Bodnar, D. A., et al. (1995). Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc Biol Sci, 262(1365), 259–265. doi:10.1098/rspb.1995.0204.

    CAS  PubMed  Google Scholar 

  • Rouiller, E. M., Simm, G. M., et al. (1991). Auditory corticocortical interconnections in the cat: Evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research, 86(3), 483–505. doi:10.1007/BF00230523.

    CAS  Google Scholar 

  • Roy, A., Steinmetz, P. N., et al. (2000). Rate limitations of unitary event analysis. Neural Computation, 12(9), 2063–2082. doi:10.1162/089976600300015060.

    CAS  PubMed  Google Scholar 

  • Schreiner, C. E., & Urbas, J. V. (1988). Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hearing Research, 32(1), 49–63. doi:10.1016/0378-5955(88)90146-3.

    CAS  PubMed  Google Scholar 

  • Schulze, H., & Langner, G. (1997). Periodicity coding in the primary auditory cortex of the Mongolian gerbil (Meriones unguiculatus): Two different coding strategies for pitch and rhythm? Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 181(6), 651–663. doi:10.1007/s003590050147.

    CAS  PubMed  Google Scholar 

  • Schulze, H., Hess, A., et al. (2002). Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. European Journal of Neuroscience, 15(6), 1077–1084. doi:10.1046/j.1460-9568.2002.01935.x.

    PubMed  Google Scholar 

  • Sereno, A. B., & Allman, J. M. (1991). Cortical visual areas in mammals. In A. Leventhal (Ed.), The neural basis of visual function. NewYork: MacMillan.

    Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18(10), 3870–3896.

    CAS  PubMed  Google Scholar 

  • Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374. doi:10.1146/annurev.ph.55.030193.002025.

    CAS  PubMed  Google Scholar 

  • Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586. doi:10.1146/annurev.ne.18.030195.003011.

    CAS  PubMed  Google Scholar 

  • Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. Journal of Neuroscience, 13(1), 334–350.

    CAS  PubMed  Google Scholar 

  • Stanley, G. B., Li, F. F., et al. (1999). Reconstruction of natural scenes from ensemble responses in the lateral geniculate nucleus. Journal of Neuroscience, 19(18), 8036–8042.

    CAS  PubMed  Google Scholar 

  • Tardif, E., & Clarke, S. (2001). Intrinsic connectivity of human auditory areas: A tracing study with DiI. European Journal of Neuroscience, 13(5), 1045–1050. doi:10.1046/j.0953-816x.2001.01456.x.

    CAS  PubMed  Google Scholar 

  • Thomson, A. M., & Deuchars, J. (1997). Synaptic interactions in neocortical local circuits: Dual intracellular recordings in vitro. Cerebral Cortex (New York, N.Y.), 7(6), 510–522. doi:10.1093/cercor/7.6.510.

    CAS  Google Scholar 

  • Tomita, M., & Eggermont, J. J. (2005). Cross-correlation and joint spectro-temporal receptive field properties in auditory cortex. Journal of Neurophysiology, 93(1), 378–392. doi:10.1152/jn.00643.2004.

    PubMed  Google Scholar 

  • von der Malsburg, C. (1981). The correlation theory of brain function. In E. Domany, J. L. van Hemmen & K. Schulten (Eds.), pp.: MPI Biophysical Chemistry. Internal Report 81–2. Reprinted in Models of Neural Networks II (1994). Berlin: Springer.

    Google Scholar 

  • von der Malsburg, C. (1985). Nervous structures with dynamical links. Berichte der Bunsengesellschaft fur Physikalische Chemie, 89, 703–710.

    Google Scholar 

  • Wang, X., Lu, T., et al. (2003). Cortical processing of temporal modulations. Speech Communication, 41, 107–121. doi:10.1016/S0167-6393(02)00097-3.

    CAS  Google Scholar 

  • Warland, D. K., Reinagel, P., et al. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78(5), 2336–2350.

    CAS  PubMed  Google Scholar 

  • Watson, G. S. (1964). Smooth regression analysis. Sankhya Series A, 26, 359–372.

    Google Scholar 

  • Wessberg, J., Stambaugh, C. R., et al. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 408(6810), 361–365. doi:10.1038/35042582.

    CAS  PubMed  Google Scholar 

  • Zhang, K., Ginzburg, I., et al. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79(2), 1017–1044.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Alberta Heritage Foundation for Medical Research, the National Sciences and Engineering Research Council of Canada, a Canadian Institutes of Health-New Emerging Team grant, and the Campbell McLaurin Chair for Hearing Deficiencies. The authors would like to thank Greg Shaw for his valuable and helpful comments on the basic ideas of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos J. Eggermont.

Additional information

Action Editor: S. A. Shamma

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 156 kb)

Appendices

Appendix 1: algorithm for patterns extraction

We remind here that our algorithm uses ideas from datamining to discover frequent episodes in event sequences, like the APRIORI algorithm (Agrawal and Srikant 1994; Agrawal and Srikant 1995; Mannila et al. 1997). The algorithm uses two general ideas:

  1. 1)

    If a pattern of size s is found d times in the data, then necessarily all possible subsets of this pattern, and a fortiori the patterns of size s-1 to 2, are also found at least d times in the data. Reciprocally, if one pattern of size s-1 or 2 is found less than d times, then it cannot generate a pattern of size s found more than d times. As a consequence, the general scheme of the algorithm is to extract patterns of size two, then use them to find patterns of size three. The patterns of size three will be used to extract patterns of size four and so on.

  2. 2)

    we can obtain patterns of size s + 1 by concatenating the last channel of patterns of size s with the first channel of patterns of size two. All possible patterns of size s + 1 appearing more than d times are then tested by this algorithm because of the idea 1.

A more detailed description of the steps of the algorithms follows:

  1. 1)

    Detect all patterns of size two {C i, C j} following the three rules. The times when the first and last channel activity of each pattern occur are also stored.

  2. 2)

    Find patterns of size three: let us consider the pattern {C i, C j} found at the set of end times T 1 (times of C j) with a delay l 1 between C i and C j, and the pattern {C j, C k} found at times T 2 (times of C j) with a delay l 2 between C j and C k and such that \( l_1 + l_2 \le d_2 \) (rule number 2). Therefore, the intersection T 3 between T 1 and T 2 is the set of times of C j when the pattern {C i, C j, C k} happens, with a delay of l 1 + l 2 between C i and C k. This new pattern is kept if T 3 induces a repetition rate of the pattern greater than d 1.

  3. 3)

    The process is iterated: patterns of size s are found by combining patterns of size s-1 with patterns of size two, given than the same channel is not repeated more than d 3 times (rule number 3). The iteration stops when no new pattern following the three rules as previously defined is found.

A simplified pseudo-code would be

1.

//Vector of Spike Times of the i-th channel

2.

Events Ci  = {e 1 ,e 2 ,...,e Ni }

3.

//Patterns of size 1

4.

Compt_Pattern = 0

5.

For Channel from 1 to Nb_channels,

6.

Nb = length of Events Channel

7.

If Nb > d 1

8.

//A new pattern is found

9.

Compt_Pattern = Compt_Pattern +1;

10.

Patterns 1 (Compt_Pattern) = { Channel }

11.

EndIf

12.

EndFor

13.

//Patterns of size 2

14.

For Channel2 from 1 to Nb_channels,

15.

For Delay_Channels from 0 to d 2 by BinWidth

16.

Nb = Number of times that Delay_Channels ≤ Events Channel1 (j)- Events Channel2 (k) < Delay_Channel + BinWidth for k > j, j ∈ {1,..., length of Events Channel1 }, k ∈{1,..., length of Events Channel2 }

17.

If Nb > d 1

18.

//A new pattern is found

19.

Compt_Pattern = Compt_Pattern +1;

20.

Patterns 2 (Compt_Pattern) = { Channel1, Channel2 }

21.

Delays 2 (Compt_Pattern) = { Delay_Channels }

22.

Times 2 (Compt_Pattern) = { Start and end times of each occurence of this pattern }

23.

EndIf

24.

EndFor

25.

EndFor

26.

EndFor

27.

Stop_Loop = 0

28.

//Size of the pattern

29.

Size = 2

30.

//Patterns of size >2

31.

While Stop_Loop = 0

32.

Compt_Pattern = 0

33.

For i from 1 to length of Patterns Size

34.

For j from 1 to length of Patterns 2

35.

If last channel of Patterns Size (i) and first channel of Patterns 2 (j) are the same

36.

If Delays Size (i) + Delays 2 (j) ≤ d 2

37.

Times_New_Pattern = Intersection(end times in Times Size (i) , start times in Times 2 (j))

38.

If length of Times_New_Pattern > d 1

39.

//A new pattern is found

40.

Compt_Pattern = Compt_Pattern +1

41.

Patterns Size+1 (Compt_Pattern) = {Patterns Size (i) ,last channel of Patterns 2 (j)}

42.

Delays Size+1 (Compt_Pattern) = { Delays Size (i) + Delays 2 (j) }

43.

Times Size+1 (Compt_Pattern) = {Start and end times of each occurence of this pattern}

44.

EndIf

45.

EndIf

46.

EndIf

47.

EndFor

48.

EndFor

49.

If Patterns Size+1 is empty

50.

Stop_Loop = 1

51.

EndIf

52.

EndWhile

A Matlab code for this algorithm is provided in the supplementary material.

Appendix 2: Forward selection of variables maximizing the mutual information

A variable is a row of the matrix M(i,j), i.e. a fixed i. The procedure described in the methods section (step 3) corresponds to the following pseudo-code:

1.

IMAX = 0

2.

Stop_Loop = 0

3.

Selection = \( \mathop {Arg\min }\limits_i \left( {H\left( {\left( {M\left( {i,j} \right)} \right)_j } \right)} \right) \)

4.

While Stop_Loop = 0

5.

Clear New_I_max

6.

For \( i \notin Selection \),

7.

Selection_Temp = Selection \( \cup \) i

8.

New_I_max(i) = I (Selection_Temp,Stim.)

9.

EndFor

10.

If \( \mathop {Max}\limits_i \left( {New\_I\_\max \left( i \right)} \right) > I^{MAX} \)

11.

Selection = Selection\( \mathop {ArgMax}\limits_i \left( {New\_I\_\max \left( i \right)} \right) \)

12.

Else

13.

Stop_Loop = 1

14.

EndIf

15.

EndWhile

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourévitch, B., Eggermont, J.J. Maximum decoding abilities of temporal patterns and synchronized firings: application to auditory neurons responding to click trains and amplitude modulated white noise. J Comput Neurosci 29, 253–277 (2010). https://doi.org/10.1007/s10827-009-0149-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0149-3

Keywords

Navigation