Skip to main content

Advertisement

Log in

The cost of linearization

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Linear additivity of synaptic input is a pervasive assumption in computational neuroscience, and previously Bernander et al. (Journal of Neurophysiology 72:2743–2753, 1994) point out that the sublinear additivity of a passive neuronal model can be linearized with voltage-dependent currents. Here we re-examine this perspective in light of more recent findings and issues. Based on in vivo intracellular recordings, three voltage-dependent conductances seem to be of interest for pyramidal cells of the forebrain: two of them are amplifying, I NaP and I h ; and one of them is attenuating, I A . Based on particular I-V characteristics reported in the literature, each of these three voltage-dependent currents linearizes a particular range of synaptic excitation. Computational simulations use a steady-state, one-compartment model. They establish maximal linear ranges, where supralinear effects—due to adding too much of any one conductance—limit these ranges. Specific, carefully selected pairwise combinations of these currents can linearize larger ranges than either current alone. In terms of parameters, the steady-state I-V characteristics of each current are critical. On the other hand, the relationships between the results here and resting conductance to ground, synaptic conductance, and number of active synapses are simple and easily scaled; thus in regard to these three latter dependences, the results here are easily generalized. Finally, to improve our understanding of evolved function, the relative metabolic costs of linearization are quantified. In one case, there is a clear preference arising from this cost consideration (a particular I h , I NaP pairing is less costly compared to a particular I A , I NaP pairing that produces an equivalent, linearized range). However in other cases, a preference will depend on the required range; but in any event, the largest linearized range observed here (28 mV), from a combination of I h and I A , is significantly more costly than the 20 mV range that the I h , I NaP pair produces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal, N., Hamam, B. N., Magistretti, J., Alonso, A., & Ragsdale, D. S. (2001). Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer v neurons. Neuroscience, 102, 53–64. doi:10.1016/S0306-4522(00)00455-3.

    Article  PubMed  CAS  Google Scholar 

  • Andrasfalvy, B. K., & Magee, J. C. (2001). Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 21, 9151–9159.

    PubMed  CAS  Google Scholar 

  • Attwell, D., & Gibb, A. (2005). Neuroenergetics and the kinetic design of excitatory synapses. Nature Reviews. Neuroscience, 11, 841–849. doi:10.1038/nrn1784.

    Article  CAS  Google Scholar 

  • Attwell, D., & Laughlin, S. B. (2001). An energy budget for signalling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21, 1133–1145. doi:10.1097/00004647-200110000-00001.

    PubMed  CAS  Google Scholar 

  • Balasubramanian, V., & Berry II, M. J. (2002). A test of metabolically efficient coding in the retina. Network, 13, 531–552.

    PubMed  Google Scholar 

  • Bekkers, J. M. (2000). Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. The Journal of Physiology, 525, 611–620. doi:10.1111/j.1469-7793.2000.t01-2-00611.x.

    Article  PubMed  CAS  Google Scholar 

  • Bernander, O., Koch, C., & Douglas, R. J. (1994). Amplification and linearization of distal synaptic input to cortical pyramidal cells. Journal of Neurophysiology, 72, 2743–2753.

    PubMed  CAS  Google Scholar 

  • Bernardo, J. M., & Smith, A. F. M. (2000). Bayesian theory. New York: Wiley 608 pp.

    Google Scholar 

  • Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience, 17, 8621–8644.

    PubMed  CAS  Google Scholar 

  • Cash, S., & Yuste, R. (1999). Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron, 22, 383–394. doi:10.1016/S0896-6273(00)81098-3.

    Article  PubMed  CAS  Google Scholar 

  • Colbert, C. M., & Johnston, D. (1996). Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. The Journal of Neuroscience, 16, 6676–6686.

    PubMed  CAS  Google Scholar 

  • Cook, E. P., Wilhelm, A. C., Guest, J. A., Lian, Y., Masse, N. Y., & Colbert, C. M. (2007). The neuronal transfer function: contributions from voltage- and time-dependent mechanisms. Progress in Brain Research, 165, 1–11. doi:10.1016/S0079-6123(06)65001-2.

    Article  PubMed  Google Scholar 

  • Crochet, S., & Petersen, C. C. H. (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neuroscience, 9, 608–610. doi:10.1038/nn1690.

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. Journal of Neurophysiology, 69, 1118–1135.

    PubMed  CAS  Google Scholar 

  • Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751. doi:10.1038/nrn1198.

    Article  PubMed  CAS  Google Scholar 

  • Fee, M. S. (2000). Active stabilization of electrodes for intracellular recording in awake behaving animals. Neuron, 27, 461–468. doi:10.1016/S0896-6273(00)00057-X.

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D. (1994). Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex. Current Opinion in Neurobiology, 4, 563–568. doi:10.1016/0959-4388(94)90058-2.

    Article  PubMed  CAS  Google Scholar 

  • French, C. R., Sah, P., Buckett, K. J., & Gage, P. W. (1990). A voltage-dependent persistent sodium current in mammalian hippocampal neurons. The Journal of General Physiology, 95, 1139–1157. doi:10.1085/jgp.95.6.1139.

    Article  PubMed  CAS  Google Scholar 

  • Gasparini, S., & Magee, J. C. (2006). State-dependent dendritic computation in hippocampal ca1 pyramidal neurons. The Journal of Neuroscience, 26, 2088–2100. doi:10.1523/JNEUROSCI.4428-05.2006.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, D. H., Sripati, A. P., & Andreou, A. G. (2003). Energy efficiency in a channel model for the spiking axon. Neurocomputing 52–54. Computational Neuroscience: Trends in Research, 2003, 39–44.

    Google Scholar 

  • Goldman, D. E. (1943). Potential, impedance and rectification in membranes. The Journal of General Physiology, 27, 37–60. doi:10.1085/jgp.27.1.37.

    Article  CAS  PubMed  Google Scholar 

  • Gulledge, A. T., Kampa, B. M., & Stuart, G. J. (2005). Synaptic integration in dendritic trees. Journal of Neurobiology, 64, 75–90. doi:10.1002/neu.20144.

    Article  PubMed  CAS  Google Scholar 

  • Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., & McCormick, D. A. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron, 47, 423–435. doi:10.1016/j.neuron.2005.06.016.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., & Katz, B. (1949). The effect of sodium ions on the electrical activity of the giant axon of the squid. The Journal of Physiology, 108, 37–77.

    Google Scholar 

  • Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875. doi:10.1038/42571.

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesh, B., Wheat, H. S., & Ferster, D. (1993). Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. Science, 262, 1901–1904. doi:10.1126/science.8266083.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D., Magee, J. C., Colbert, C. M., & Christie, B. R. (1996). Active properties of neuronal dendrites. Annual Review of Neuroscience, 19, 165–186. doi:10.1146/annurev.ne.19.030196.001121.

    Article  PubMed  CAS  Google Scholar 

  • Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neural networks. Science, 301, 1870–1874. doi:10.1126/science.1089662.

    Article  PubMed  CAS  Google Scholar 

  • Léger, J.-F., Stern, E. A., Aertsen, A., & Heck, D. (2005). Synaptic integration in rat frontal cortex shaped by network activity. Journal of Neurophysiology, 93, 281–293. doi:10.1152/jn.00067.2003.

    Article  PubMed  Google Scholar 

  • Levy, W. B., & Baxter, R. A. (1996). Energy efficient neural codes. Neural Computation, 8, 531–543. doi:10.1162/neco.1996.8.3.531.

    Article  PubMed  CAS  Google Scholar 

  • Levy, W. B., & Baxter, R. A. (2002). Energy-efficient neuronal computation via quantal synaptic failures. The Journal of Neuroscience, 22, 4746–4755.

    PubMed  CAS  Google Scholar 

  • Levy, W. B with simulations by Morel, D. (2006). A Bayesian Constraint on Neural Computation. Proceeding of the IEEE, International Symposium on Information Theory (ISIT), Seattle, Washington, July 9–14.

  • Levy, W. B., Colbert, C. M., & Desmond, N. L. (1990). Elemental adaptive processes of neurons and synapses: a statistical/computational perspective. In M. Gluck & D. Rumelhart (Ed.) Neuroscience and Connectionist Theory (pp. 187–253). Lawrence Erlbaum Associates.

  • London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 18(19), 7613–7624.

    PubMed  CAS  Google Scholar 

  • Magee, J. C. (1999). Voltage-gated ion channels in dendrites. In G. Stuart, N. Spruston, & M. Häusser (Eds.), Dendrites (pp. 139–160). Oxford University Press.

  • Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nature Reviews. Neuroscience, 1, 181–190. doi:10.1038/35044552.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895–903. doi:10.1038/78800.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C., Hoffman, D., Colbert, C., & Johnston, D. (1998). Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annual Review of Physiology, 60, 327–346. doi:10.1146/annurev.physiol.60.1.327.

    Article  PubMed  CAS  Google Scholar 

  • Magistretti, J., & Alonso, A. (1999). Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons. The Journal of General Physiology, 114, 491–509. doi:10.1085/jgp.114.4.491.

    Article  PubMed  CAS  Google Scholar 

  • McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, 115–133. doi:10.1007/BF02478259.

    Article  Google Scholar 

  • Morel, D., & Levy, W. B. (2007). Persistent sodium is a better linearizing mechanism than the hyperpolarization-activated current. Neurocomputing, 70, 1635–1639. doi:10.1016/j.neucom.2006.10.054.

    Article  Google Scholar 

  • Paré, D., Shink, E., Gaudreau, H., Destexhe, A., & Lang, E. J. (1998). Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 79, 1450–1460.

    PubMed  Google Scholar 

  • Polsky, A., Mel, B. W., & Schiller, J. (2004). Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience, 7, 621–627. doi:10.1038/nn1253.

    Article  PubMed  CAS  Google Scholar 

  • Priebe, J., & Ferster, D. (2005). Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex. Neuron, 45, 133–145. doi:10.1016/j.neuron.2004.12.024.

    Article  PubMed  CAS  Google Scholar 

  • Sarpeshkar, R. (1998). Analog versus digital: extrapolating from electronics to neurobiology. Neural Computation, 10, 1601–1638. doi:10.1162/089976698300017052.

    Article  PubMed  CAS  Google Scholar 

  • Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. The Journal of Physiology, 482, 325–352.

    PubMed  CAS  Google Scholar 

  • Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.

    PubMed  CAS  Google Scholar 

  • Vervaeke, K., Hu, H., Graham, L. J., & Storm, J. F. (2006). Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron, 49, 257–270. doi:10.1016/j.neuron.2005.12.022.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, T. V., & Baddeley, R. J. (2003). Synaptic energy efficiency in retinal processing. Vision Research, 43, 1283–1290. doi:10.1016/S0042-6989(03)00096-8.

    Article  PubMed  Google Scholar 

  • Vincent, T. V., Baddeley, R. J., Troscianko, T., & Gilchrist, I. D. (2005). Is the early visual system optimized to be energy efficient? Network, 16, 175–190.

    Article  PubMed  Google Scholar 

  • Yuste, R., & Tank, D. W. (1996). Dendritic integration in mammalian neurons a century after Cajal. Neuron, 16, 701–716. doi:10.1016/S0896-6273(00)80091-4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Walter and Mary Munster Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B Levy.

Additional information

Action Editor: Erik De Schutter

Appendices

Appendix A

The relationships of Table 5 are made more transparent by a few equations. Using the NaP-enhanced system as an example, the basic current equations (d = dendrite, s = synapses, and NaP = persistent sodium) and their derivatives are

$$\begin{array}{*{20}l} {{\begin{array}{*{20}l} {{I_{d} = g_{d} {\left( {V_{m} {\left( {g_{s} } \right)} - V_{d} } \right)},} \hfill} & {{\frac{{dI_{d} }}{{dg_{s} }} = g_{d} \frac{{dV_{m} }}{{dg_{s} }},} \hfill} \\ {{I_{s} = g_{s} {\left( {V_{m} {\left( {g_{s} } \right)} - V_{s} } \right)},} \hfill} & {{\frac{{dI_{s} }}{{dg_{s} }} = V_{m} {\left( {g_{s} } \right)} - V_{s} + g_{d} \frac{{dV_{m} }}{{dg_{s} }},} \hfill} \\ \end{array} } \hfill} \\ {{I_{{NaP}} = \overline{g} _{{NaP}} {\left( {V_{m} } \right)}{\left( {V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} } \right)} = \overline{g} _{{NaP}} \;f{\left( {V_{m} } \right)}{\left( {V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} } \right)}} \hfill} \\ {{\frac{{dI_{{NaP}} }}{{dg_{s} }} = \overline{g} _{{NaP}} {\left( {V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} } \right)}\frac{{df{\left( {V_{m} } \right)}}}{{dV_{m} }}\frac{{dV_{m} }}{{dg_{s} }} + \overline{g} _{{NaP}} \;f{\left( {V_{m} } \right)}\frac{{dV_{m} }}{{dg_{s} }}.} \hfill} \\ \end{array} $$

Remembering that, in steady-state, the sum of the currents is zero (i.e., I s  + I NaP  + I d  = 0), the derivatives can also be combined and \(\frac{{df\left( {V_{\text{m}} } \right)}}{{dV_{\text{m}} }}\) solved for such that

$$\begin{aligned} & \frac{{df{\left( {V_{m} } \right)}}}{{dV_{m} }} \\ & = - {\left[ {\frac{{g_{d} \frac{{dV_{m} }}{{dg_{s} }} + V_{m} {\left( {g_{s} } \right)} - V_{s} + g_{s} \frac{{dV_{m} }}{{dg_{s} }} + \overline{g} _{{NaP}} \;f{\left( {V_{m} } \right)}\frac{{dV_{m} }}{{dg_{s} }}}}{{\overline{g} _{{NaP}} {\left( {V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} } \right)}\frac{{dV_{m} }}{{dg_{s} }}}}} \right]} \\ \end{aligned} $$
(9)

Let V s  = 0 and, in the linear range, let \(\frac{{dV_{m} {\left( {g_{s} } \right)}}}{{dg_{s} }}\)  = constant = K. Rearranging Eq. (9) gives

$$\frac{{df{\left( {V_{m} } \right)}}}{{dV_{m} }}\overline{g} _{{NaP}} {\left( {V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} } \right)}K = - {\left[ {g_{d} K + V_{m} {\left( {g_{s} } \right)} + g_{s} K + \overline{g} _{{NaP}} \;f{\left( {V_{m} } \right)}K} \right]}.$$

Taking the derivative with respect to V m of both sides of this equation sets up the ordinary differential equation

$$\frac{{d^{2} f{\left( {V_{m} } \right)}}}{{dV^{2}_{m} }}{\left( {V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} } \right)} + 2\frac{{df{\left( {V_{m} } \right)}}}{{dV_{m} }} + \frac{2}{{\overline{g} _{{NaP}} K}} = 0,$$

which can be solved for f(V m ). That is,

$$f{\left( {V_{m} } \right)} = - \frac{1}{{\overline{g} _{{Nap}} K}}{\left[ {V_{m} {\left( {g_{s} } \right)} + \frac{{C_{1} \overline{g} _{{NaP}} K + {\left( {V^{{Nernst}}_{{Na}} } \right)}^{2} }}{{V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} }}} \right]} + C_{2} ,$$
(10)

where C 1 and C 2 are constants. Finally, Eq. (10) and its derivative df(V m )/dV m can be substituted back into Eq. (9) which can then be solved for V m in the linear range.

$$V_{m} = V^{{{\text{Nernst}}}}_{{{\text{Na}}}} + {\left( {g_{d} + g_{s} + C_{2} \overline{g} _{{NaP}} } \right)}K\;{\text{or}},\;{\text{equivalently}},$$
$$K = {\left| {\frac{{dV_{m} }}{{dg_{s} }}} \right|}_{{{\text{cst}}}} = \frac{{V_{m} {\left( {g_{s} } \right)} - V^{{{\text{Nernst}}}}_{{{\text{Na}}}} }}{{g_{d} + g_{s} + C_{2} \overline{g} _{{NaP}} }},$$

where C 2 is a constant whose value is independent of g s and V m . The last equation shows that, in the linear range, since V m changes linearly with g s , the numerator is a linear function of g s . This implies that the denominator also changes linearly (i.e., if g s is doubled so must g d and \(\overline{g} _{{NaP}} \)) to maintain dV m (g s )/dg s = constant. The inverse relationship between dV m (g s )/dg s and g d or g s or \(\overline{g} _{{NaP}} \) is also apparent in the last equation. Equivalent equations can be derived for a system which includes I A .

Appendix B

Table 6  

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, D., B Levy, W. The cost of linearization. J Comput Neurosci 27, 259–275 (2009). https://doi.org/10.1007/s10827-009-0141-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-009-0141-y

Keywords

Navigation