Skip to main content
Log in

Compartmental neural simulations with spatial adaptivity

Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Since their inception, computational models have become increasingly complex and useful counterparts to laboratory experiments within the field of neuroscience. Today several software programs exist to solve the underlying mathematical system of equations, but such programs typically solve these equations in all parts of a cell (or network of cells) simultaneously, regardless of whether or not all of the cell is active. This approach can be inefficient if only part of the cell is active and many simulations must be performed. We have previously developed a numerical method that provides a framework for spatial adaptivity by making the computations local to individual branches rather than entire cells (Rempe and Chopp, SIAM Journal on Scientific Computing, 28: 2139–2161, 2006). Once the computation is reduced to the level of branches instead of cells, spatial adaptivity is straightforward: the active regions of the cell are detected and computational effort is focused there, while saving computations in other regions of the cell that are at or near rest. Here we apply the adaptive method to four realistic neuronal simulation scenarios and demonstrate its improved efficiency over non-adaptive methods. We find that the computational cost of the method scales with the amount of activity present in the simulation, rather than the physical size of the system being simulated. For certain problems spatial adaptivity reduces the computation time by up to 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amaral, D. (1993). Emerging principles of intrinsic hippocampal organization. Current Opinion in Neurobiology, 3, 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Bischofberger, J., & Jonas, P. (1997). Action potential propagation into the pre-synaptic dendrites of rat mitral cells. Journal Physiology (London), 504, 359–365.

    Article  CAS  Google Scholar 

  • Bower, J., & Beeman, D. (1998). The Book of Genesis: Exploring realistic neural models with the GEneral NEural SImulation System. Telos: Santa Clara.

    Google Scholar 

  • Chen, W., Midtgaard, J., & Shepherd, G. (1997). Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells. Science, 278, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Connors, B., & Long, M. (2004). Electrical synapses in the mammalian brain. Annual Reviews Neuroscience, 27, 393–418.

    Article  CAS  Google Scholar 

  • Fukuda, T., Kosaka, T., Singer, W., & Galuske, R. (2006). Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. Journal of Neuroscience, 26(13), 3434–3443.

    Article  PubMed  CAS  Google Scholar 

  • Golding, N., Kath, W., & Spruston, N. (2001). Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. Journal of Neurophysiology, 86, 2998–3010.

    PubMed  CAS  Google Scholar 

  • Goldstein, S., & Rall, W. (1974). Changes in action potential shape and velocity for changing core conductor geometry. Biophysical Journal, 14, 731–757.

    Article  PubMed  CAS  Google Scholar 

  • Häusser, M., Stuart, G., Racca, C., & Sakmann, B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron, 15, 637–647.

    Article  PubMed  Google Scholar 

  • Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Bio-Medical Computing, 15, 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.

    PubMed  CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  • Hormuzdi, S., Filippov, M., Mitropoulou, G., Monyer, H., & Bruzzone, R. (2004). Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochimica Biophysica Acta, 1662, 113–137.

    Article  CAS  Google Scholar 

  • Jarsky, T., Roxin, A., Kath, W., & Spruston, N. (2005). Conditional dendritic spike propagation following distal synaptic activation of hippocampal ca1 pyramidal neurons. Nature Neuroscience, 8, 1667–1676.

    Article  PubMed  CAS  Google Scholar 

  • Kopell, N., & Ermentrout, B. (2004). Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proceedings of the National Academy of Sciences, 101(43), 15482–15487.

    Article  CAS  Google Scholar 

  • Llinas, R., & Sugimori, M. (1980). Electrophysiological properties of in-vitro purkinje cell dendrites in mammalian cerebellar slices. Journal of Physiology (London), 305, 197–213.

    CAS  Google Scholar 

  • Lundqvist, M., Rehn, M., Djurfeldt, M., & Lansner, A. (2006). Attractor dynamics in a modular network model of neocortex. Network-Computation In Neural Systems, 17, 253–276.

    Article  Google Scholar 

  • Manor, Y., Rinzel, J., Segev, I., & Yarom, Y. (1997). Low-amplitude oscillations in the inferior olive: A model based on electrical coupling of neurons with heterogeneous channel densities. Journal of Neurophysiology, 77, 2736–2752.

    PubMed  CAS  Google Scholar 

  • Markram, H. (2006). The Blue Brain Project. Nature Reviews Neuroscience, 7(2), 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Martina, M., Vida, I., & Jonas, P. (2000). Distal initiation and active propagation of action potentials in interneuron dendrites. Science, 287, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Mascagni, M. (1991). A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron models. Journal of Neuroscience Methods, 36, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Cannia, C., Lytton, W. W., Markram, H., & Hines, M. L. (2006). Parallel network simulations with NEURON. Journal of Comparative Neurology, 21, 119–129.

    CAS  Google Scholar 

  • Rall, W (1977) Core conductor theory and cable properties of neurons. In: Handbook of physiology. The nervous system. Cellular biology of neurons, sect. 1, vol. I. Bethesda, MD: Am Physiol Soc, pp. 39–97.

  • Rempe, M., & Chopp, D. (2006). A predictor-corrector algorithm for reaction-diffusion equations associated with neural activity on branched structures. SIAM Journal on Scientific Computing, 28, 2139–2161.

    Article  Google Scholar 

  • Roxin, A., Riecke, H., & Solla, S. (2004). Self-sustained activity in a small-world network of excitable neurons. Physical Review Letters, 92(19), 198101–1981011.

    Article  PubMed  CAS  Google Scholar 

  • Saraga, F., Ng, L., & Skinner, F. (2006). Distal gap junctions and active dendrites can tune network dynamics. Journal of Neurophysiology, 95, 1669–1682.

    Article  PubMed  Google Scholar 

  • Saraga, F., & Skinner, F. (2004). Location, location, location (and density) of gap junctions in multi-compartment models. Neurocomputing, 58, 713–719.

    Article  Google Scholar 

  • Skinner, F., Zhang, L., Velazquez, J. P., & Carlen, P. (1999). Bursting in inhibitory interneuronal networks: A role for gap-junctional coupling. Journal of Neurophysiology, 81, 1274–1283.

    PubMed  CAS  Google Scholar 

  • Sohl, G., Maxeiner, S., & Willecke, K. (2005). Expression and function of neuronal gap junctions. Nature Reviews Neuroscience, 6, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G., & Häusser, M. (1994). Initiation and spread of sodium action potentials in cerebellar purkinje cells. Neuron, 13, 703–712.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, G., Spruston, N., Sakmann, B., & Häusser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian cns. Trends in Neurosciences, 20, 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R., & Bibbig, A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. Journal of Neuroscience, 20(6), 2086–2093.

    PubMed  CAS  Google Scholar 

  • Traub, R., Contreras, D., Cunningham, M., Murray, H., LeBeau, F., Roopen, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.

    Article  PubMed  Google Scholar 

  • Traub, R., Kopell, N., Bibbig, A., Buhl, E., LeBeau, F., & Whittington, M. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. Journal of Neuroscience, 21(23), 9478–9486.

    PubMed  CAS  Google Scholar 

  • Vetter, P., Roth, A., & Haüsser, M. (2000). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.

    Google Scholar 

  • Zsiros, V., Aradi, I., & Maccaferri, G. (2007). Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus. Journal of Physiology (London), 578, 527–544.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the National Science Foundation (NSF-IGERT, DGE 9987577 to MJR) and the National Institutes of Health (NS-46064 to NS, WLK, and DLC as part of the Collaborative Research in Computational Neuroscience Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Chopp.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rempe, M.J., Spruston, N., Kath, W.L. et al. Compartmental neural simulations with spatial adaptivity. J Comput Neurosci 25, 465–480 (2008). https://doi.org/10.1007/s10827-008-0089-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0089-3

Keywords

Navigation