Skip to main content
Log in

Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

An Erratum to this article was published on 07 October 2008

Abstract

We study an excitatory all-to-all coupled network of N spiking neurons with synaptically filtered background noise and slow activity-dependent hyperpolarization currents. Such a system exhibits noise-induced burst oscillations over a range of values of the noise strength (variance) and level of cell excitability. Since both of these quantities depend on the rate of background synaptic inputs, we show how noise can provide a mechanism for increasing the robustness of rhythmic bursting and the range of burst frequencies. By exploiting a separation of time scales we also show how the system dynamics can be reduced to low-dimensional mean field equations in the limit N → ∞. Analysis of the bifurcation structure of the mean field equations provides insights into the dynamical mechanisms for initiating and terminating the bursts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Brockhaus, J., & Ballanyi, K. (1998). Synaptic inhibition in the isolated respiratory network of neonatal rats. European Journal of Neuroscience, 10, 3823–3839.

    Article  PubMed  CAS  Google Scholar 

  • Butera, R. J., Rinzel, J., & Smith, J. C. (1999a). Models of respiratory rthythm generation in the pre-bötzinger complex. I. bursting pacemaker neurons. Journal of Neurophysiology, 81, 382–397.

    Google Scholar 

  • Butera, R. J., Rinzel, J., & Smith, J. C. (1999b). Models of respiratory rthythm generation in the pre-bötzinger complex. II. Populations of coupled pacemaker neurons. Journal of Neurophysiology, 81, 398–415.

    Google Scholar 

  • Buzaki, G. (2007). Rhythms in the brain. Oxford: Oxford University Press.

    Google Scholar 

  • Chub, N., & O’Donovan, M. J. (2001). Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo. Journal of Neurophysiology, 85, 2166–2176.

    PubMed  CAS  Google Scholar 

  • Cupello, A. (2003). Neuronal transmembrane chloride electrochemical gradient: A key player in GABAA receptor activation physiological effect. Amino Acids, 24, 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Del Negro, C. A., Johnson, S. M., Butera, R. J., & Smith, J. C. (2001). Models of respiratory rthythm generation in the pre-bötzinger complex. III. Experimental tests of model predictions. Journal of Neurophysiology, 86, 59–74.

    PubMed  Google Scholar 

  • Del Negro, C. A., Morgado-Valle, C., & Feldman, J. L. (2002). Respiratory rhythm: An emergent network property? Neuron, 34, 821–830.

    Article  PubMed  Google Scholar 

  • Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, J. L., & Del Negro, C. A. (2006). Looking for inspiration: New perspectives on respiratory rhythm. Naturalist Reviews in Neuroscience, 7, 232–242, March.

    Article  CAS  Google Scholar 

  • Funk, G. D., & Feldman, J. L. (1995). Generation of respiratory rhythm and pattern in mammals: Insights from developmental studies. Current Opinion in Neurobiology, 5, 778–785.

    Article  PubMed  CAS  Google Scholar 

  • Gang, H., Ditzinger, T., Ning, C. Z., & Haken, H. (1993). Stochastic resonance without external periodic force. Physical Review Letters, 71, 807–810.

    Article  PubMed  Google Scholar 

  • Gardiner, C. W. (2004). Handbook of stochastic methods. New York: Springer.

    Google Scholar 

  • Ge, Q., & Feldman, J. L. (1998). AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. Journal of Physiology, 509, 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Gigante, G., Mattia, M., & Giudice, P. D. (2007). Diverse population-bursting modes of adapting spiking neurons. Physical Review Letters, 98, 148101.

    Article  PubMed  CAS  Google Scholar 

  • Gutkin, B. S., Ermentrout, B. G. (1998). Dynamics of membrane excitability determine inter-spike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural Computation, 10, 1047–1065.

    Article  PubMed  CAS  Google Scholar 

  • Han, S. K., Yim, T. G., Postnov, D. E., & Sosnovtseva, O. V. (1999). Interacting coherence resonance oscillators. Physical Review Letters, 83, 1771.

    Article  CAS  Google Scholar 

  • Hille, B. (2001). Ion channels of excitable membranes, 3rd edition. Sunderland, MA: Sinauer.

    Google Scholar 

  • Holcman, D., & Tsodyks, M. (2006). The emergence of up and down states in cortical networks. PLoS Computational Biology, 2(3), 0714–0181.

    Article  CAS  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in Neuroscience: The geometry of excitability and bursting. Cambridge: MIT.

    Google Scholar 

  • Johnson, S. M., Wilkerson, J. E., Wenninger, M. R., Henderson, D. R., & Mitchell, G. S. (2002). Role of synaptic inhibition in turtle respiratory rhythm generation. Journal of Physiology, 544, 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Jonas, E., & Kaczmarek, L. K. (1999). The inside story: Subcellular mechanisms of neuromodulation. In P. S. Katz (Ed.), Beyond neurotransmission: Neuromodulation and its importance for information processing (pp. 83–120). Oxford: Oxford University Press.

    Google Scholar 

  • Kosmidis, E. K., Pierrefiche, O., & Vibert, J. F. (2004). Respiratory-like rhythmic activity can be produced by an excitatory network of non-pacemaker neuron models. Journal of Neurophysiology, 92, 686–699.

    Article  PubMed  Google Scholar 

  • Kurrer, C., & Schulten, K. (1995). Noise-induced synchronous neural oscillations. Physical Review E, 51, 6213.

    Article  CAS  Google Scholar 

  • Kuznetsov, Y. A. (2004). Elements of Applied Bifurcation Theory, 3rd edition. New York: Springer-Verlag.

    Google Scholar 

  • Lindner, B., Garcia-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports, 392, 321–424.

    Article  Google Scholar 

  • Loebel, A., & Tsodyks, M. (2002). Computation by ensemble synchronization in recurrent networks with synaptic depression. Journal of Comparative Neuroscience, 13, 111–124.

    Article  Google Scholar 

  • Mattia, M., & Giudice, P. D. (2002). Population dynamics of interacting spiking neurons. Physical Review E, 66, 051917.

    Article  CAS  Google Scholar 

  • McCormick, D. A., & Yuste, R. (2006). Up states and cortical dynamics. In G. Grillner (Ed.), Microcircuits: The interface between neurons and global brain function. Cambridge: MIT.

    Google Scholar 

  • O’Donovan, M. J. (1999). The origin of spontaneous activity in developing networks of the vertebrate nervous system. Current Opinion in Neurobiology, 9, 94–104.

    Article  PubMed  CAS  Google Scholar 

  • Pace, R. W., Mackay, D. D., Feldman, J. L., & Del Negro, C. A. (2007). Role of persistent sodium current in mouse preBötzinger complex neurons and respiratory rhythm generation. Journal of Physiology, 582, 485–496.

    Article  CAS  Google Scholar 

  • Pham, J., Pakdaman, K., & Vibert, J. F. (1998). Noise-induced coherent oscillations in randomly connected neural networks. Physical Review E, 58, 3610.

    Article  CAS  Google Scholar 

  • Pikovisky, A., & Ruffo, S. (1999). Finite-size effects in a population of interacting oscillators. Physical Review E, 59, 1633.

    Article  Google Scholar 

  • Pradines, J. R., Osipov, G. V., & Collins, J. J. (1999). Coherence resonance in excitable and oscilatory systems: The essential role of slow and fast dynamics. Physical Review E, 60, 6407.

    Article  CAS  Google Scholar 

  • Rappel, W. J., & Karma, A. (1996). Noise-induced coherence in neural networks. Physical Review Letters, 77, 3256.

    Article  PubMed  CAS  Google Scholar 

  • Rappel, W. J., & Strogatz, S. (1994). Stochastic resonance in an autonomous system with a nonuniform limit cycle. Physical Review E, 50, 3249–3250.

    Article  CAS  Google Scholar 

  • Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch, I. Segev (Eds.), Methods of neuronal modeling: From synapses to networks, 2nd Ed. (pp. 252–291). Cambridge: Bradford.

    Google Scholar 

  • Sernagor, E., Chub, N., Ritter, A., & O’Donovan, M. J. (1995). Pharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord. Journal of Neuroscience, 15, 7452–7464.

    PubMed  CAS  Google Scholar 

  • Shelly, M. J., & Tao, L. (2001). Effidient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Comparative Neuroscience, 11, 11–119.

    Google Scholar 

  • Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.

    Article  PubMed  CAS  Google Scholar 

  • Tabak, J., O’Donovan, M. J., Rinzel, J. (2006). Differential control of active and silent phases in relaxation models of neuronal rhythms. Journal of Comparative Neuroscience, 21, 307–328.

    Article  Google Scholar 

  • Tabak, J., & Rinzel, J. (2005). Bursting in excitatory neural networks. In S. Coombes & P. C. Bressloff (Eds.), Bursting: The genesis of rhythm in the nervous system (pp. 273–301). Hackensack: World Scientific.

    Google Scholar 

  • Tabak, J., Rinzel, J., & O’Donovan, J. (2001). The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord. Journal of Neuroscience, 21, 8966–8978.

    PubMed  CAS  Google Scholar 

  • Tabak, J., Senn, W., O’Donovan, J., & Rinzel, J. (2000). Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. Journal of Neuroscience, 20, 3041–3056.

    PubMed  CAS  Google Scholar 

  • Tryba, A. K., Peña, F., & Ramirez, J. M. (2003). Stabilization of bursting in respiratory pacemaker neurons. Journal of Neuroscience, 23, 3538–3546.

    PubMed  CAS  Google Scholar 

  • Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent networks with frequency-dependent synapses. Journal of Neuroscience, 20, RC50.

    PubMed  CAS  Google Scholar 

  • Van Vreeswijk, C., & Hansel, D. (2001). Patterns of synchrony in neural networks with spike adaptation. Neural Computation, 13, 959–992.

    Article  PubMed  Google Scholar 

  • Vladimirski, B. B., Tabak, J., O’Donovan, M. J., & Rinzel, J. (in press). Episodic activity in a heterogenious excitatory network, from spiking neurons to mean field. Journal of Comparative Neuroscience.

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF (DMS 0515725 and RTG 0354259). The authors would also like to thank Christopher Del Negro and Peter Roper for their helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Additional information

Action Editor: Misha Tsodyks

An erratum to this article is available at http://dx.doi.org/10.1007/s10827-008-0114-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesse, W.H., Borisyuk, A. & Bressloff, P.C. Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. J Comput Neurosci 25, 317–333 (2008). https://doi.org/10.1007/s10827-008-0081-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-008-0081-y

Keywords

Navigation