Skip to main content
Log in

A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Transition-metal oxide perovskites usually exhibit mixed ionic and electronic conductivity and have been widely investigated as electrode materials for use in solid-oxide fuel cells. Recently, samarium nickelate SmNiO3 was found experimentally to show promising potential for use in proton-conducting fuel cells. To understand the ionic conductivity of SmNiO3, the oxygen and proton diffusion therein are investigated via density functional theory calculations in this work. Based on the vacancy hopping mechanism, oxygen diffusion in SmNiO3 shows a migration barrier of 0.84 eV. The proton diffusion is studied in terms of different diffusion mechanisms, including reorientation, intraoctahedral, and interoctahedral hopping. The migration barrier for intraoctahedral migration is calculated to be lower than that for interoctahedral hopping. To realize long-range diffusion, the proton is predicted to exhibit reorientation and intraoctahedral hopping. These findings provide a theoretical guide for the development of mixed ionic and electronic perovskite conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ormerod, R.M.: Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003). https://doi.org/10.1039/b105764m

    Article  Google Scholar 

  2. Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004). https://doi.org/10.1021/cr020724o

    Article  Google Scholar 

  3. Pavone, M., Ritzmann, A.M., Carter, E.A.: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ. Sci. 4, 4933 (2011). https://doi.org/10.1039/c1ee02377b

    Article  Google Scholar 

  4. Shao, Z., Halle, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004). https://doi.org/10.1038/nature02863

    Article  Google Scholar 

  5. Huang, Y.-H., Dass, R.I., Xing, Z.-L., Goodenough, J.B.: Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006). https://doi.org/10.1126/science.1125877

    Article  Google Scholar 

  6. Zhang, W., Fujii, K., Niwa, E., Hagihala, M., Kamiyama, T., Yashima, M.: Oxide-ion conduction in the Dion–Jacobson phase CsBi2Ti2NbO10−δ. Nat. Commun. 11, 1224 (2020). https://doi.org/10.1038/s41467-020-15043-z

    Article  Google Scholar 

  7. Kuklja, M.M., Mastrikov, Y.A., Jansang, B., Kotomin, E.A.: The intrinsic defects, disordering, and structural stability of BaxSr1–xCoyFe1–yO3–δ Perovskite solid solutions. J. Phys. Chem. C 116, 18605–18611 (2012). https://doi.org/10.1021/jp304055s

    Article  Google Scholar 

  8. Walker, E., Ammal, S.C., Suthirakun, S., Chen, F., Terejanu, G.A., Heyden, A.: Mechanism of sulfur poisoning of Sr2Fe1.5Mo0.5O6−δ perovskite anode under solid oxide fuel cell conditions. J. Phys. Chem. C 118, 23545–23552 (2014). https://doi.org/10.1021/jp507593k

    Article  Google Scholar 

  9. Zhao, S., Gao, L., Lan, C., Pandey, S.S., Hayase, S., Ma, T.: First principles analysis of oxygen vacancy formation and migration in Sr2BMoO6 (B = Mg Co, Ni). RSC Adv. 6, 31968–31975 (2016). https://doi.org/10.1039/C6RA02297A

    Article  Google Scholar 

  10. Mastrikov, Y.A., Kuklja, M.M., Kotomin, E.A., Maier, J.: First-principles modelling of complex perovskite (Ba1−xSrx)(Co1−yFey)O3−δ for solid oxide fuel cell and gas separation membrane applications. Energy Environ. Sci. 3, 1544 (2010). https://doi.org/10.1039/c0ee00096e

    Article  Google Scholar 

  11. Han, J.W., Yildiz, B.: Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3−δ/(La,Sr)2CoO4+δ hetero-interface. Energy Environ. Sci. 5, 8598 (2012). https://doi.org/10.1039/c2ee03592h

    Article  Google Scholar 

  12. Zhao, S., Gao, L., Lan, C., Pandey, S.S., Hayase, S., Ma, T.: Oxygen vacancy formation and migration in double perovskite Sr2CrMoO6: a first-principles study. RSC Adv. 6, 43034–43040 (2016). https://doi.org/10.1039/C6RA05581H

    Article  Google Scholar 

  13. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., Barnett, S.A.: A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016). https://doi.org/10.1039/C5EE03858H

    Article  Google Scholar 

  14. Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., Liu, M.: Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3. Science 326, 126–129 (2009). https://doi.org/10.1126/science.1174811

    Article  Google Scholar 

  15. Zuo, C., Zha, S., Liu, M., Hatano, M., Uchiyama, M.: Ba(Zr0.1Ce0.7Y0.2)O3–δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318–3320 (2006). https://doi.org/10.1002/adma.200601366

    Article  Google Scholar 

  16. Iwahara, H., Esaka, T., Uchida, H., Maeda, N.: Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3–4, 359–363 (1981). https://doi.org/10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  17. Iwahara, H., Uchida, H., Tanaka, S.: High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells. Solid State Ionics 9–10, 1021–1025 (1983). https://doi.org/10.1016/0167-2738(83)90125-X

    Article  Google Scholar 

  18. Zhou, W., Shao, Z.: Fuel cells: Hydrogen induced insulation. Nat. Energy (2016). https://doi.org/10.1038/nenergy.2016.78

    Article  Google Scholar 

  19. Shi, J., Zhou, Y., Ramanathan, S.: Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nat. Commun. 5, 1–9 (2014). https://doi.org/10.1038/ncomms5860

    Article  Google Scholar 

  20. Zhou, Y., Guan, X., Zhou, H., Ramadoss, K., Adam, S., Liu, H., Lee, S., Shi, J., Tsuchiya, M., Fong, D.D., Ramanathan, S.: Strongly correlated perovskite fuel cells. Nature 534, 231–234 (2016). https://doi.org/10.1038/nature17653

    Article  Google Scholar 

  21. Yoo, P., Liao, P.: Metal-to-insulator transition in SmNiO3 induced by chemical doping: a first principles study. Mol. Syst. Des. Eng. 3, 264–274 (2018). https://doi.org/10.1039/C8ME00002F

    Article  Google Scholar 

  22. Hermet, J., Torrent, M., Bottin, F., Dezanneau, G., Geneste, G.: Hydrogen diffusion in the protonic conductor BaCe1−xGdxO3−x from density functional theory. Phys. Rev. B. 87, 104303 (2013). https://doi.org/10.1103/PhysRevB.87.104303

    Article  Google Scholar 

  23. Dawson, J.A., Miller, J.A., Tanaka, I.: First-principles insight into the hydration ability and proton conduction of the solid state proton conductor, Y and Sn co-doped BaZrO3. Chem. Mater. 27, 901–908 (2015). https://doi.org/10.1021/cm504110y

    Article  Google Scholar 

  24. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., de Gironcoli, S., Delugas, P., DiStasio, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H.-Y., Kokalj, A., Küçükbenli, E., Lazzeri, M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H.-V., Otero-de-la-Roza, A., Paulatto, L., Poncé, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X., Baroni, S.: Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017). https://doi.org/10.1088/1361-648X/aa8f79

    Article  Google Scholar 

  25. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  26. Monkhorst, H., Pack, J.: Special points for Brillouin zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  Google Scholar 

  27. Cococcioni, M., de Gironcoli, S.: Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B Condens. Matter. Mater Phys. 71, 035105 (2005). https://doi.org/10.1103/PhysRevB.71.035105

    Article  Google Scholar 

  28. Otero-de-la-Roza, A., Johnson, E.R.: Van der Waals interactions in solids using the exchange-hole dipole moment model. J. Chem. Phys. 136, 174109 (2012). https://doi.org/10.1063/1.4705760

    Article  Google Scholar 

  29. Henkelman, G., Uberuaga, B.P., Jónsson, H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000). https://doi.org/10.1063/1.1329672

    Article  Google Scholar 

  30. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000). https://doi.org/10.1063/1.1323224

    Article  Google Scholar 

  31. Lan, C., Zhao, S., Luo, J., Fan, P.: First-principles study of anion diffusion in lead-free halide double perovskites. Phys. Chem. Chem. Phys. 20, 24339–24344 (2018). https://doi.org/10.1039/C8CP04150D

    Article  Google Scholar 

  32. Lan, C., Luo, J., Dou, M., Zhao, S.: First-principles calculations of the oxygen-diffusion mechanism in mixed Fe/Ti perovskites for solid-oxide fuel cells. Ceram. Int. 45, 17646–17652 (2019). https://doi.org/10.1016/j.ceramint.2019.05.330

    Article  Google Scholar 

  33. Sun, M., Chou, J.P., Hu, A., Schwingenschlögl, U.: Point defects in blue phosphorene. Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b02871

    Article  Google Scholar 

  34. Henry, P.F., Weller, M.T., Wilson, C.C.: Variable temperature powder neutron diffraction study of SmNiO3 through its M-I transition using a combination of samarium and nickel isotopic substitution. Chem. Mater. 14, 4104–4110 (2002). https://doi.org/10.1021/cm021192v

    Article  Google Scholar 

  35. Muñoz-García, A.B., Pavone, M., Carter, E.A.: Effect of antisite defects on the formation of oxygen vacancies in Sr2FeMoO6: implications for ion and electron transport. Chem. Mater. 23, 4525–4536 (2011). https://doi.org/10.1021/cm201799c

    Article  Google Scholar 

  36. Muñoz-García, A.B., Ritzmann, A.M., Pavone, M., Keith, J.A., Carter, E.A.: Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc. Chem. Res. (2014). https://doi.org/10.1021/ar4003174

    Article  Google Scholar 

  37. Ritzmann, A.M., Muñoz-García, A.B., Pavone, M., Keith, J.A., Carter, E.A.: Ab initio DFT + U analysis of oxygen vacancy formation and migration in La1–xSrxFeO3–δ (x = 0, 0.25, 0.50). Chem. Mater. 25, 3011–3019 (2013). https://doi.org/10.1021/cm401052w

    Article  Google Scholar 

  38. Ritzmann, A.M., Pavone, M., Muñoz-García, A.B., Keith, J.A., Carter, E.A.: Ab initio DFT + U analysis of oxygen transport in LaCoO3: the effect of Co3+ magnetic states. J. Mater. Chem. A 2, 8060–8074 (2014). https://doi.org/10.1039/c4ta00801d

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61904114, 11947068), Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic (6019211004K), and Shenzhen Science & Technology Project (JCYJ20170818092745839). This work was carried out at LvLiang Cloud Computing Center of China, and calculations were performed on TianHe-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfeng Lan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, C., Li, H. & Zhao, S. A first-principles study of the proton and oxygen migration behavior in the rare-earth perovskite SmNiO3. J Comput Electron 19, 905–909 (2020). https://doi.org/10.1007/s10825-020-01501-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01501-w

Keywords

Navigation