Skip to main content
Log in

The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A new structure with a Gaussian doping distribution along the channel region is proposed to improve the performance of tunneling carbon nanotube field-effect transistors (T-CNTFETs). The new structure involves a Gaussian doping distribution in the channel region with a low level of doping at the sides that gradually increases towards the middle of the channel. The source doping is p-type, while the doping in the drain and channel regions is n-type. The doping distribution is uniform in the drain/source regions. To simulate the behavior of T-CNTFETs, the Poisson and Schrödinger equations are solved self-consistently using the nonequilibrium Green’s function formalism. The simulation results show that the proposed structure exhibits increased saturation current but decreased OFF-state current compared with the conventional structure (C-T-CNTFET), yielding a ~ 104 times higher current ratio for a gate length of 20 nm. The proposed structure also shows improvements in parameters such as the transconductance, gate capacitance, cutoff frequency, and delay compared with the conventional structure and can be considered to be a more appropriate option for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pulfrey, D.L., Chen, L.: Comparison of p-i-n and n-i-n carbon nanotube FETs regarding high-frequency performance. Solid-State Electron. 53, 935–939 (2009)

    Article  Google Scholar 

  2. Wang, H., Chang, S., Hu, Y., He, H., He, J., Huang, Q., He, F., Wang, G.: A novel barrier controlled tunnel FET. IEEE Electron. Device. Lett. 35, 798–800 (2014)

    Article  Google Scholar 

  3. Jamalabadi, Z., Keshavarzi, P., Naderi, A.: Sdc-Cntfet: stepwise doping channel design in carbon nanotube field effect transistors for improving short channel effects immunity. Int. J. Mod. Phys B. 28, 1450048 (2014)

    Article  Google Scholar 

  4. Choi, W., Park, B.G., Lee, J.D., Liu, T.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron. Device Lett. 28, 743–745 (2007)

    Article  Google Scholar 

  5. Abdi-Tahne, B., Naderi, A.: SLD-MOSCNT: a new MOSCNT with step–linear doping profile in the source and drain regions. Int. J. Mod. Phys B. 31, 1650242 (2017)

    Article  Google Scholar 

  6. Naderi, A., Keshavarzi, P., Orouji, A.A.: LDC-CNTFET: a carbon nanotube field effect transistor with linear doping profile channel. Superlattices Microstruct. 50, 145–156 (2011)

    Article  Google Scholar 

  7. Naderi, A., Abdi-Tahne, B.: Methods in improving the performance of carbon nanotube field effect transistors. ECS J. Solid State Sci. Technol. 5, M131–M140 (2016)

    Article  Google Scholar 

  8. Pourfath, M., Kosina, H., Selberherr, S.: Tunneling CNTFETs. J. Comput. Electron. 6, 243–246 (2007)

    Article  Google Scholar 

  9. KhademHosseini, V., Dideban, D., Ahmadi, M.T., Ismail, R.: An analytical approach to model capacitance and resistance of capped carbon nanotube single electron transistor. AEU-Int. J. Electr. Commun. 90, 97–102 (2018)

    Article  Google Scholar 

  10. Singh, A., Khosla, M., Raj, B.: Design and analysis of electrostatic doped Schottky barrier CNTFET based low power SRAM. AEU-Int. J. Electr. Commun. 80, 67–72 (2017)

    Article  Google Scholar 

  11. Naderi, A., Ahmadmiri, S.A.: Attributes in the performance and design considerations of asymmetric drain and source regions in carbon nanotube field effect transistors: quantum simulation study. ECS J. Solid State Sci. Technol. 5, M63–M68 (2016)

    Article  Google Scholar 

  12. Hailiang, Z., Yue, H., Minxuan, Z.: Numerical study of the sub-threshold slope in T-CNFETs. J. Semicond. 31, 094005 (2010)

    Article  Google Scholar 

  13. Koswatta, S.O., Nikonov, D.E., Lundstrom, M.S.: Computational study of carbon nanotube pin tunnel FETs. In: Electron Devices Meeting. IEDM Technical Digest. IEEE International, pp. 518–521 (2005)

  14. Lee, M.J., Choi, W.Y.: Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron. Device Lett. 33, 1459–1461 (2012)

    Article  Google Scholar 

  15. Naderi, A., Keshavarzi, P.: The effects of source/drain and gate overlap on the performance of carbon nanotube field effect transistors. Superlattices Microstruct. 52, 962–976 (2012)

    Article  Google Scholar 

  16. Yousefi, R., Saghafi, K., Moravvej-Farshi, M.K.: Numerical study of lightly doped drain and source carbon nanotube field effect transistors. IEEE Trans. Electron. Devices. 57, 765–771 (2010)

    Article  Google Scholar 

  17. Sepehri, A., Pincak, R.: Modeling the electron transport in nanostructures by using the concept of bions in M-theory. Int J Theor. Phys. 55, 4577–4594 (2016)

    Article  Google Scholar 

  18. Rashidian, Z., Kheirandish, F.: Graphene-based normal/ferromagnetic/normal junction as a polarizer. Int. J. Theor. Phys. 51, 1989–1996 (2012)

    Article  Google Scholar 

  19. Yongmei, Z.: Transport properties of a nonequilibrium quantum dot connected to ferromagnetic leads. Int. J. Theor. Phys. 56, 841–850 (2017)

    Article  Google Scholar 

  20. Anvarifard, M.K.: Modeling a double-halo-doping carbon nanotube FET in DC and AC operations. ECS J. Solid State Sci. Technol. 7, M209–M216 (2018)

    Article  Google Scholar 

  21. Akbari-Eshkalak, M., Anvarifard, M.K.: A guideline for achieving the best electrical performance with strategy of halo in graphene nanoribbon field effect transistor. ECS J. Solid State Sci. Technol. 5, M141–M147 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Kermanshah University of Technology for financial support of this research under grant no. S/P/T/1191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Ghodrati, M. & Baniardalani, S. The use of a Gaussian doping distribution in the channel region to improve the performance of a tunneling carbon nanotube field-effect transistor. J Comput Electron 19, 283–290 (2020). https://doi.org/10.1007/s10825-020-01445-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01445-1

Keywords

Navigation