Skip to main content
Log in

The impact of vacancy defects on the performance of a single-electron transistor with a carbon nanotube island

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The single-electron transistor (SET) principle of operation is based on the Coulomb blockade (CB) phenomenon. The island material and associated defects have a direct impact on the range of the CB effect and the operating speed of the SET. In this research, the impact of vacancy defects on a SET-based on a carbon nanotube (CNT) is investigated. The results show that a SET with six atomic vacancies exhibits the lowest Coulomb diamond area and highest operating speed. The results also show that increasing the distance between two single vacancies decreases the Coulomb diamond area of the SET. Moreover, the location of the vacancies in the CNT and its effect on the operation of the SET are investigated. The comparison study shows that an antidote vacancy in the CNT close to the drain side results in the shortest CB range and narrowest bandgap, resulting in the CNT SET with the highest operating speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. KhademHosseini, V., Ahmadi, M.T., Afrang, S., Ismail, R.: Current analysis and modelling on fullerene single electron transistor at room temperature. J. Electron. Mater. 46(7), 4294–4298 (2017)

    Article  Google Scholar 

  2. KhademHosseini, V., Dideban, D., Ahmadi, M.T., Ismail, R.: An analytical approach to model capacitance and resistance of capped carbon nanotube single electron transistor. AEU Int. J. Electron. Commun. 90, 97–102 (2018)

    Article  Google Scholar 

  3. KhademHosseini, V., Ahmadi, M.T., Ismail, R.: Analysis and modeling of fullerene single electron transistor based on quantum dot arrays at room temperature. J. Electron. Mater. 47, 4799–4806 (2018)

    Article  Google Scholar 

  4. KhademHosseini, V., Dideban, D., Ahmadi, M.T., Ismail, R.: Single electron transistor scheme based on multiple quantum dot islands: carbon nanotube and fullerene. ECS J. Solid State Sci. Technol. 7(10), M145–M152 (2018)

    Article  Google Scholar 

  5. Zoghi, M., Yazdanpanah Goharrizi, A., Saremi, M.: Band gap tuning of armchair graphene nanoribbons by using antidotes. J. Electron. Mater. 46(1), 340–346 (2017)

    Article  Google Scholar 

  6. Yazdanpanah Goharrizi, A., Zoghi, M., Saremi, M.: Armchair graphene nanoribbon resonant tunneling diodes using antidote and BN doping. IEEE Trans. Electron Devices 63(9), 3761–3768 (2016)

    Article  Google Scholar 

  7. Saremi, M., Saremi, M., Niazi, H., Yazdanpanah Goharrizi, A.: Modeling of lightly doped drain and source graphene nanoribbon field effect transistors. Superlattices Microstruct. 60, 67–72 (2013)

    Article  Google Scholar 

  8. Banhart, F.: Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J. Mater. Sci. 41(4), 4505–4511 (2006)

    Article  Google Scholar 

  9. Gülseren, O., Yildirim, T., Ciraci, S.: Systematic ab initio study of curvature effects in carbon nanotubes. Phys. Rev. B 65, 153405 (2002)

    Article  Google Scholar 

  10. Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Smalley, R.E.: Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 324, 213–216 (2000)

    Article  Google Scholar 

  11. Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S.: Direct evidence for atomic defects in graphene layers. Nature 430, 870 (2004)

    Article  Google Scholar 

  12. Tien, L.G., Tsai, C.H., Li, F.Y., Lee, M.H.: Influence of vacancy defect density on electrical properties of armchair single wall carbon nanotube. Diam. Relat. Mater. 17, 563–566 (2008)

    Article  Google Scholar 

  13. Lee, A.T., Kang, Y.J., Chang, K.J.: Transport properties of carbon nanotubes: effects of vacancy clusters and disorder. J. Phys. Chem. C 116, 1179–1184 (2012)

    Article  Google Scholar 

  14. Rocha, A.R., Padilha, J.E., Fazzio, A., da Silva, A.J.R.: Transport properties of single vacancies in nanotubes. Phys. Rev. B 77, 153406 (2008)

    Article  Google Scholar 

  15. Yu-Pin, L., Li-Gan, T., Chuen-Horng, T., Ming-Hsien, L., Feng-Yin, L.: Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density. Chin. Phys. B 20(8), 087303 (2011)

    Article  Google Scholar 

  16. Benramache, S., Belahssen, O., Temam, H.B.: Effect of band gap energy on the electrical conductivity in doped ZnO thin film. J. Semicond. 35(7), 073001 (2014)

    Article  Google Scholar 

  17. Talbo, V., Galdin-Retailleau, S., Valentin, A., Dollfus, P.: Physical simulation of silicon-nanocrystal-based single-electron transistors. IEEE Trans. Electron Devices 58(10), 3286 (2011)

    Article  Google Scholar 

  18. Sée, J., Dollfus, P., Galdin, S., Hesto, P.: From wave-functions to current-voltage characteristics: overview of a Coulomb blockade device simulator using fundamental physical parameters. J. Comput. Electron. 5(1), 35–48 (2006)

    Article  Google Scholar 

  19. Lientsching, G., Weymann, I., Hadley, P.: Simulating hybrid circuits of single-electron transistors and field-effect transistors. Jpn. J. Appl. Phys. 42, 6467–6472 (2003)

    Article  Google Scholar 

  20. Kumar Sinha, P., Sankaranarayanan, S.: Single electron transistor and its simulation methods. Int. J. Eng. Dev. Res. 2(2), 1907–1925 (2014)

    Google Scholar 

  21. Atomistic Toolkit is licensed software. https://quantumwise.com/products. Accessed Nov 2018

  22. Grabert, H., Devoret, M.H.: Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures. Springer, Berlin (1992)

    Book  Google Scholar 

  23. KhademHosseini, V., Ahmadi, M.T., Afrang, S., Ismail, R.: Analysis and simulation of coulomb blockade and coulomb diamonds in fullerene single electron transistors. J. Nanoelectron. Optoelectron. 13, 138–143 (2018)

    Article  Google Scholar 

  24. Howlader, A.H., Islam, M.S., Tanaka, S., Makino, T., Hashimoto, A.: Vacancy and curvature effects on the phonon properties of single wall carbon nanotube. Jpn. J. Appl. Phys. 57(2S2), 02CB08 (2018)

    Article  Google Scholar 

  25. Amjadipour, M., Viet Dao, D., Motta, N.: Vibration analysis of initially curved single walled carbon nanotube with vacancy defect for ultrahigh frequency nanoresonators. Microsyst. Technol. 22(5), 1115–1120 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Kashan under the supervision of Dr. Daryoosh Dideban. The authors also thank the Research Management Center (RMC) of Universiti Teknologi Malaysia (UTM) for providing an excellent research environment for this simulation research using Atomistix ToolKit and to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryoosh Dideban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khademhosseini, V., Dideban, D., Ahmadi, M.T. et al. The impact of vacancy defects on the performance of a single-electron transistor with a carbon nanotube island. J Comput Electron 18, 428–435 (2019). https://doi.org/10.1007/s10825-018-01290-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-01290-3

Keywords

Navigation