Skip to main content
Log in

Role of side groups and temperature dependent studies in a molecular device

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The quantum transport through Tour Wires (TWs) functionalized with different side groups was studied using nonequilibrium Green’s function formalism combined with extended Huckel theory. Au–TW–Au junctions were constructed with functional groups \(\hbox {NO}_{2}\) and \(\hbox {NH}_{2}\). The transmission spectrum and the isosurface of transmission eigen channel at the HOMO resonance and the LUMO resonance shows that the resonant transmission peaks are related to the delocalized nature of the \(\pi \)-orbitals of the TWs that was not much affected by the functionalization at room temperature. Furthermore, the influence of the temperature effect on the transport characteristics have been emphasized, and the result shows that for the TW and TW–\(\hbox {NH}_{2}\) systems conductance increase with increasing temperature indicating the dominating transport mechanism which is due to thermionic emission. The temperature dependence arises from the thermal spreading in the leads but also from a thermal average over the different configurations. In particular, negative differential resistance nature was observed for TW–\(\hbox {NO}_{2}\) at the temperature of 100 K in the positive and the negative bias region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono molecular devices. Nature (London) 408, 541–548 (2000)

    Article  Google Scholar 

  2. Donhauser, Z.J., Mantooth, B.A., Kelly, K.F., Bumm, A., Monnell, J.D., Stapleton, J.J., Rawlett, A.M., Tour, J.M., Weis, P.S.: Conducting switching in single molecule through conformational changes. Science 292, 2303–2307 (2001)

    Article  Google Scholar 

  3. Reed, M.A., Chen, J., Rawlett, A.M., Price, D.W., Tour, J.M.: Molecular random access memory. Appl. Phys. Lett. 78, 3735–3737 (2001)

    Article  Google Scholar 

  4. Tour, J.M.: Electronics, synthesis and testing of components. Acc. Chem. Res. 33, 791–804 (2000)

    Article  Google Scholar 

  5. Andrews, Q.D., Richard, R.C., Van Duyne, P., Ratner, M.A.: Single molecules electron transport junctions: charging and geometric effects on conductance. Chem. Phys. 125, 174718–174718-9 (2006)

  6. Kergueris, C., Bourgoin, J.P., Esteve, D., Urbina, C., Magoga, M., Joachim, C.: Electron transport through a metal–molecule–metal junction. Phys. Rev. B. 59, 12505–12513 (1999)

    Article  Google Scholar 

  7. Hall, L.E., Reimers, J.R., Noel, S., Hush, N.S., Silvebrook, K.: Formalism, analytical model and a priori-Green’s function-based calculations of the current–voltage characteristics of molecular wires. J. Chem. Phys. 112, 1510–1521 (2000)

    Article  Google Scholar 

  8. Palacios, J.J., Perez-Jimenez, A.J., Louis, E., Sanfabian, E., Verges, J.A.: First principle approach to electrical transport in atomic-scale nanostructures. Phys. Rev. B 66, 035322–035322–14 (2002)

  9. Pantelides, S.T., Di Ventra, M., Lang, N.D.: Molecular electronics by the numbers. Physica B 296, 72–77 (2001)

    Article  Google Scholar 

  10. Stokbro, K., Taylora, J., Brandbygea, M., Mozosb, J.L., Ordejon, P.: Theoretical study of the nonlinear conductance of gi-thiol benzene coupled to Au(111) surfaces via thiol and thiolated bonds. Comput. Mater. Sci. 27, 151–160 (2003)

    Article  Google Scholar 

  11. Zahid, F., Paulsson, M., Datta, S.: Advanced Semiconductors and Organic Nano-Techniques. Electrical conduction through molecules. Academic Press, New York (2003)

    Google Scholar 

  12. Haug, H., Jahuo, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (1996)

    Google Scholar 

  13. Jauho, A.P., Wingreen, N.S., Meir, Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994)

    Article  Google Scholar 

  14. Svizhenko, A., Anantram, M.P., Govindan, T.R., Siegel, B.: Two-dimensional quantum mechanical modeling of nanotransistors. J. App. Phys. 91, 2343–2354 (2002)

    Article  Google Scholar 

  15. Stokbro, K.: First-principles modeling of electron transport. J. Phys. Condens. Mater. 20, 064216–064216-7 (2008)

  16. Datta, S.: Quantum Transport: Atom to Transistor, p. 120. Cambridge University Press, Cambridge, UK (2005)

    Book  Google Scholar 

  17. Reed, M.A., Lee, T.: Molecular Nanoelectronics. American Scientific Publishers, New York, NY (2003)

    Google Scholar 

  18. Datta, S., Tian, W., Hong, S., Reifenberger, R., Henderson, J.L., Kubiak, C.P.: Current voltage characteristics of self assembled monolayers by scanning tunneling microscope. Phys. Rev. Lett. 79, 2530–2533 (1997)

    Article  Google Scholar 

  19. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density functional method of nonequllibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  20. Yaliraki, S.N., Rotberg, A.E., Gonzalez, C., Mujica, V., Ratner, M.A.: The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description. J. Chem. Phys. 111, 6997–7002 (1999)

    Article  Google Scholar 

  21. Tour, J.M., Kozaki, M., Seminario, J.M.: Molecular scale electronics: A synthesis/computational approach to digital computing. J. Am. Chem. Soc. 120, 8486–8493 (2001)

    Article  Google Scholar 

  22. Lin, L.-L., Leng, J.-C., Song, X.-N., Li, Z.-L., Luo, Y., Wang, C.-K.: Effect of aromatic coupling on electronic transport in bimolecular junctions. J. Phys. Chem. C 113, 14474–14477 (2009)

    Article  Google Scholar 

  23. Taylor, J., Brandbyge, M., Stokbro, K.: Conductance switching in a molecular device: the role of side groups and intermolecular interactions. Phy. Rev. B 68, 121101–121101-4 (2003)

  24. Li, Y.J., Zhao, J., Yin, G.: Theoretical investigations of oligo(phenylene ethylene) molecular wire: effects from substituents and external electric field. Comput. Mater. Sci. 39, 775–781 (2007)

    Article  Google Scholar 

  25. Reed, M.A., Tour, J.M.: Computing with molecules. Sci. Am. 282, 86–93 (2000)

    Article  Google Scholar 

  26. Miano, L., Seminario, J.M.: Electronic and structural properties of oligophenylene ethynylenes on Au(111) surfaces. J. Chem. Phys. 126, 184706–184706-7 (2007)

  27. Serrato-Villegas, L., Gallo, M., Delgado-Ríos, M.: Maria Teresa Romero and Daniel Glossman-Mitnik: Ab initio study of electron transport in 4-(3-nitro-4-tetrafluorophenylthiolate-ethynyl, phenylethynyl) benzenethiolate. J. Mol. Model. 18, 611–621 (2012)

    Article  Google Scholar 

  28. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phy. Rev. Lett. 68, 2512–2515 (1992)

    Article  Google Scholar 

  29. Ghosh, A.W., Rakshit, T., Datta, S.: Gating of molecular transistors: electrostatic and conformational. Nano Lett. 4, 565–568 (2004)

    Article  Google Scholar 

  30. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, UK (1995)

    Book  Google Scholar 

  31. Pauly, F., Viljas, J.K., Cuevas, J.C., Schon, G.: Density-functional study of tilt-angle and temperature-dependent conductance in biphenyl dithiol single-molecule junctions. Phy. Rev. B. 77, 155312–155312-9 (2008)

  32. Troisi, A., Ratner, M.A.: Conformational molecular rectifiers. Nano Lett. 4, 591–595 (2004)

    Article  Google Scholar 

  33. ATOMISTISTIX TOOLKIT version 11.2.3, Quantum Wise A/S. www.quantumwise.com

  34. Troullier, N., Martins, J.L.: Efficient pseudo potentials for plane-wave calculations. Phys. Rev. B. 43, 1993–2006 (1991)

  35. Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A., Soler, J.M.: Linear-scaling ab-initio calculations for large and complex systems. Phys. Status Sol. B. 215, 809–817 (1999)

    Article  Google Scholar 

  36. Ke, S., Baranger, H.U., Yang, W.: Electron transport through single conjugated organic molecules: basis set effects is ab initio calculations. J. Chem. Phys. 127, 144107–144107-6 (2007)

  37. Solomon, G.C., Andrews, D.Q., van Duyne, R.P., Ratner, M.A.: When things are not as they seem: quantum interference turns molecular electron transfer “Rules” upside down. J. Am. Chem. Soc. 130, 7788–7789 (2008)

    Article  Google Scholar 

  38. Yin, Xing, Liu, H., Zhao, J.: Electronic transportation through asymmetrically substituted oligo(phenylene ethynylene)s: studied by first principles nonequilibrium Green’s function formalism. J. Chem. Phys. 125, 094711 (2006)

    Article  Google Scholar 

  39. Kwong, G., Zhang, Z., Pan, J.: Rectifying and negative differential resistance behaviors of a functionalized Tour wire: The position effects of functional groups. Appl. Phys. Lett. 99, 123108–123108-3 (2011)

  40. Xiao, Xiaoyin, Nagahara, Larry A., Rawlett, Adam M., Tao, Nongjian: Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005)

    Article  Google Scholar 

  41. Chen, J., Wang, W., Reed, M.A., Rawlett, A.M., Price, D.W., Tour, J.M.: Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77, 1224–1226 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support for this project from DST-FIST, Government of India (Ref.No SR/FST/PSI-010/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Preferencial Kala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preferencial Kala, C., Aruna Priya, P. & John Thiruvadigal, D. Role of side groups and temperature dependent studies in a molecular device. J Comput Electron 14, 240–248 (2015). https://doi.org/10.1007/s10825-014-0644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0644-2

Keywords

Navigation