Skip to main content
Log in

Numerical analysis of electron optical system with microchannel plate

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper describes a numerical development of image converters and intensifiers which incorporate an inverting electron optical system (EOS) and a microchannel plate (MCP) as an amplifier. The numerical design of the system includes calculation of the electrostatic field in the device, trajectories of electrons emitted from a photocathode, and determination of the modulation-transfer-function (MTF) which gives the objective estimation for the image quality.

Results of the numerical experiments are shown, and the EOS with optimized characteristics is developed. It provides the nearly flat image surface, determines the position of the surface of the best focus, minimizes the image distortion and reduces a noise factor of the MCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Catchpole, C.E.: Measurement of the spatial frequency response of image devices. Adv. Electron. Electron Phys. 22(58), 425–433 (1966)

    Article  Google Scholar 

  2. Clarke, J.A.: Measuring the MTF of channel image intensifiers. Acta Electron. 16(1), 33–41 (1973)

    Google Scholar 

  3. Emberson, D.L., Holmshaw, R.T.: The design and performance of an inverting channel image intensifier. Acta Electron. 16(1), 23–32 (1973)

    Google Scholar 

  4. Evdokimov, V.N., Kudrya, A.A., Tyutikov, A.M., Flegontov, Yu.A., Shymanska, A.V.: Current density distribution in the image of the multidyne’s channel. Radiotekh. Electron. 29, 390–392 (1984)

    Google Scholar 

  5. Hoenderken, T.H., Hagen, C.W., Barth, J.E., Kruit, P., Nutzel, G.O.: Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier. J. Vac. Sci. Technol. B 19(3), 843–850 (2001)

    Article  Google Scholar 

  6. Ilyin, V.P.: Numerical Methods for Solving Problems in Electron Optics. Nauka, Novosibirsk (1974)

    Google Scholar 

  7. Ivanov, V.: The image quality evaluation. Micro-channel amplifiers. The University of Chicago, Argonne and Fermilab, Large-area picosecond photo-detectors project, USA (2009). http://psec.uchicago.edu/Papers/Ivanov_image_quality.doc

  8. Ivanov, V., Brezhnev, V.: New formulation of the synthesis problem in electron optics. Nucl. Instrum. Methods A 519, 117–132 (2004)

    Article  Google Scholar 

  9. Ivanov, V., Kriklivyy, V.: Numerical algorithms for boundary problems with disturbed axial symmetry. Nucl. Instrum. Methods A 519, 96–116 (2004)

    Article  Google Scholar 

  10. Khursheed, A.: The Finite Element Method in Charged Particle Optics. Kluwer Academic, Dordrecht (1999). Field solution for charged particle optics, pp. 25–44

  11. Miroshnikov, M.M.: Theoretical Foundations of Electron—Optical Devices. Mechanical Engineering, Leningrad (1983)

    Google Scholar 

  12. Munro, E.: Computational techniques for design of charged particle optical systems. In: Orloff, J. (ed.), Handbook of charged Particle Optics, pp. 1–74. CRC Press LLC, Boca Raton (1997)

    Google Scholar 

  13. Schagen, P.: Electronic aids to night vision. Philos. Trans. R. Soc. A 269(1196), 233–263 (1971)

    Article  Google Scholar 

  14. Schagen, P.: Image converters and intensifiers. J. Phys. E, Sci. Instr. 8, 153–160 (1975)

    Article  Google Scholar 

  15. Shymanska, A.V.: Computational modeling of stochastic processes in electron amplifiers. J. Comput. Electron. 9, 93–102 (2010)

    Article  Google Scholar 

  16. Shymanska, A.V., Evdokimov, V.N.: Effect of parameters of multidyne screen system on image quality. Sov. J. Opt. Technol. 52(7), 393–394 (1985)

    Google Scholar 

  17. Siegmund, O., Vallerga, J.V., Tremsin, A.S., Feller, W.B.: High spatial and temporal resolution neutron imaging with microchannel plate detectors. IEEE Trans. Nucl. Sci. 56(3), 1203–1209 (2009)

    Article  Google Scholar 

  18. Tremsin, A.S., Feller, W.B., Dowing, R.G.: Efficiency optimization of microchannel plate neutron imaging detectors. Nucl. Instrum. Methods A 539(1–2), 278–311 (2005)

    Article  Google Scholar 

  19. Vorobyov, Yu.V.: Dispersion figures in electrostatic immersion lenses. J. Tech. Phys. 26, 2269–2280 (1956)

    Google Scholar 

  20. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics. CRC Press, Boca Raton (1998). 1728/1740

    Google Scholar 

  21. Wiza, J.L.: Microchannel plate detectors. Nucl. Instrum. Methods A 162, 587–601 (1979)

    Article  Google Scholar 

  22. Young, D.M.: Iterative Solution of Large Linear Systems. Dover, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alla Shymanska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shymanska, A. Numerical analysis of electron optical system with microchannel plate. J Comput Electron 10, 291–299 (2011). https://doi.org/10.1007/s10825-011-0365-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-011-0365-8

Keywords

Navigation