Skip to main content
Log in

Analysis and design of rectangular microstrip antenna on two-layer substrate materials at terahertz frequency

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, an effective permittivity of the two-layer dielectric substrate material has been analyzed to enhance the electrical performance of the rectangular microstrip patch antenna at terahertz frequency. The frequency dependent effective dielectric permittivity of the substrate materials has been evaluated and result has been compared with finite integral technique based CST Microwave Studio a commercially available simulator. The input impedance characteristic with electrical performance of the rectangular microstrip patch antenna on two-layer substrate materials has also been analyzed at 600 GHz. Manipulation in the input impedance characteristic of the antenna has led to a slow wave structure. This slow wave structure has been examined at 542 GHz, and improvement in the performance has been observed without increasing the overall dimension of the proposed antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  Google Scholar 

  2. Zhong, H., Redo-Sanchez, A., Zhang, S.-C.: Identification and classification of chemicals using terahertz reflective spectroscopic focal plane imaging system. Opt. Express 14, 9130–9141 (2006)

    Article  Google Scholar 

  3. Choi, M.K., Bettermann, A.D., van der Weide, D.W.: Potential for detection of explosive and biological hazards with electronic terahertz systems. Philos. Trans. R. Soc. Lond. A 362, 337–349 (2004)

    Article  Google Scholar 

  4. Galoda, S., Singh, G.: Fighting terrorism with terahertz. IEEE Potential Mag. 26(6), 24–29 (2007)

    Article  Google Scholar 

  5. Choi, M.K., Taylor, K., Bettermann, A., van der Weide, D.W.: Broadband 10–300 GHz stimulus response sensing for chemical and biological entities. Phys. Med. Biol. 47, 3777–3787 (2002)

    Article  Google Scholar 

  6. Woolard, D.L., Brown, R., Pepper, M., Kemp, M.: Terahertz frequency sensing and imaging: a time of reckoning future applications? Proc. IEEE 93(10), 1722–1743 (2005)

    Article  Google Scholar 

  7. Fitzgerald, J., Berry, E., Zinovev, N.N., Walker, G.C., Smith, M.A., Chamberlain, J.M.: An introduction to medical imaging with coherent terahertz frequency radiation. Phys. Med. Biol. 47, R67–R84 (2002)

    Article  Google Scholar 

  8. Ozbay, E., Temelkuran, B., Bayindir, M.: Microwave applications of photonic crystals. Prog. Electromagn. Res. 41, 185–209 (2003)

    Article  Google Scholar 

  9. Gonzalo, R., Martinez, B.: The effect of dielectric permittivity on the properties of photonic band gap devices. Microw. Opt. Technol. Lett. 23(2), 92–95 (1999)

    Article  Google Scholar 

  10. Gonzalo, R.: Enhanced patch-antenna performance by suppressing surface waves using photonic-band gap substrates. IEEE Trans. Microw. Theory Tech. 47(11), 2131–2138 (1999)

    Article  Google Scholar 

  11. Yang, H.Y.D., Alexopoulos, N.G., Yablonovitch, E.: Photonic band gap materials for high gain printed circuit antennas. IEEE Trans. Antennas Propag. 45(1), 185–187 (1997)

    Article  Google Scholar 

  12. Fernandes, H.C.C., da Rocha, A.R.B.: Analysis of antennas with PBG substrate. Int. J. Infrared Millim. Waves 24(7), 1171–1176 (2003)

    Article  Google Scholar 

  13. Brown, E.R., Parker, C.D.: Radiation properties of a planar antenna on a photonic-crystal substrate. J. Opt. Soc. Am. B 10(2), 404–407 (1993)

    Article  Google Scholar 

  14. Dahele, J.S., Lee, K.F., Wong, D.P.: Dual-frequency stacked annular-ring microstrip antenna. IEEE Trans. Antennas Propag. 35(11), 1281–1285 (1987)

    Article  Google Scholar 

  15. Halim, B., Denidni, T.A.: Gain enhancement of microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Trans. Antennas Propag. 55(11), 3140–3145 (2007)

    Article  Google Scholar 

  16. Noghanian, S., Shafai, L.: Gain enhancement of annular slot antennas. IEE Proc. Microw. Antennas Propag. 148(2), 109–114 (2001)

    Article  Google Scholar 

  17. Nishiyama, E., Aikawa, M., Egashira, S.: Stacked microstrip antenna for wideband and high gain. IEE Proc. Microw. Antennas Propag. 151(2), 143–148 (2004)

    Article  Google Scholar 

  18. Kumar, P., Singh, G.: Theoretical investigation of the input impedance of gap-coupled circular microstrip patch antennas. J. Infrared Millim. Terahertz 30(11), 1148–1160 (2009)

    Article  Google Scholar 

  19. Croq, F., Pozar, D.M.: Multi-frequency operation of microstrip antennas using aperture coupled parallel resonators. IEEE Trans. Antennas Propag. 40(11), 1367–1374 (1992)

    Article  Google Scholar 

  20. Richards, W.F., Davidson, S.E., Long, S.A.: Dual-band reactively loaded microstrip antenna. IEEE Trans. Antennas Propag. 33(5), 556–560 (1985)

    Article  Google Scholar 

  21. Davidson, S.E., Long, S.A., Richards, W.F.: Dual-band microstrip antenna with monolithic reactive loading. Electron. Lett. 21(21), 936–937 (1985)

    Article  Google Scholar 

  22. Lee, R.Q., Lee, K.F.: Gain enhancement of microstrip antennas with overlaying parasitic directors. Electron. Lett. 24(11), 656–658 (1998)

    Article  Google Scholar 

  23. Sharma, A., Singh, G.: Design of single pin shorted three dielectric-layered substrates rectangular patch microstrip antenna for communication systems. Prog. Electromagn. Res. Lett. 2, 157–165 (2008)

    Article  Google Scholar 

  24. Sharma, A., Singh, G., Chauhan, D.S.: Design considerations to improve the performance of a rectangular microstrip patch antenna at THz frequency. In: Proc. 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, USA, pp. 1–2, 15–19th Sept. 2008

  25. Singh, G.: Design consideration for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53(1), 17–22 (2010)

    Article  Google Scholar 

  26. Jha, K.R., Singh, G.: Dual-band rectangular microstrip patch antenna at terahertz frequency for surveillance system. J. Comput. Electron. 9(1), 31–41 (2010)

    Article  MathSciNet  Google Scholar 

  27. Svacina, J.: Analysis of multilayer microstrip lines by a conformal mapping method. IEEE Trans. Microw. Theory Tech. 40(4), 769–772 (1992)

    Article  Google Scholar 

  28. Verma, A.K., Sadr, G.H.: Unified dispersion model for multilayer microstrip line. IEEE Trans. Microw. Theory Tech. 40(7), 1587–1591 (1992)

    Article  Google Scholar 

  29. Jansen, R.H.: A novel CAD tool ad concept compatible with the requirements of multilayer GaAs MMIC technology. In: Proc. IEEE MTT-S Microw. Symp. Dig., pp. 711–714 (1980)

  30. Hilberg, W.: From approximation to exact relations for characteristic impedances. IEEE Trans. Microw. Theory Tech. 17(5), 259–265 (1969)

    Article  Google Scholar 

  31. Kirschning, M., Jansen, R.H.: Accurate model for effective dielectric constant of microstrip with validity up to millimeter-wave frequencies. Electron. Lett. 18(6), 272–273 (1982)

    Article  Google Scholar 

  32. Hammerstad, E., Jensen, O.: Accurate models for microstrip computer aided design. In: 1980 IEEE MTT-S Int. Microw. Symp. Dig., USA, pp. 407–409 (1980)

  33. Kobayshi, M.: A dispersive formula satisfying recent requirements in microstrip CAD. IEEE Trans. Microw. Theory Tech. 36(8), 1246–1250 (1988)

    Article  Google Scholar 

  34. Iskander, M.F.: Electromagnetic Fields and Waves. Prentice-Hall, New York (1992)

    Google Scholar 

  35. Balanis, C.A.: Antenna Theory Analysis and Design. Wiley, New York (2001)

    Google Scholar 

  36. Garg, R., Bhartia, P., Bahl, I., Ittipiboon, A.: Microstrip Antenna Design Handbook. Artech House, Norwood (2001)

    Google Scholar 

  37. Gupta, K.C., Garg, R., Bahl, I., Bhartis, P.: Microstrip Lines and Slot-Lines, 2nd edn. Artech House, Norwood (1996)

    Google Scholar 

  38. Jha, K.R., Rai, M.: A slow wave structure and its application in band pass filter design. AEU Int. J. Electron. Commun. 64(2), 177–185 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, K.R., Singh, G. Analysis and design of rectangular microstrip antenna on two-layer substrate materials at terahertz frequency. J Comput Electron 9, 68–78 (2010). https://doi.org/10.1007/s10825-010-0306-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-010-0306-y

Keywords

Navigation