Skip to main content
Log in

The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous pK a, and cyclohexane–water log D

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We predict cyclohexane–water distribution coefficients (log D 7.4) for drug-like molecules taken from the SAMPL5 blind prediction challenge by the “embedded cluster reference interaction site model” (EC-RISM) integral equation theory. This task involves the coupled problem of predicting both partition coefficients (log P) of neutral species between the solvents and aqueous acidity constants (pK a) in order to account for a change of protonation states. The first issue is addressed by calibrating an EC-RISM-based model for solvation free energies derived from the “Minnesota Solvation Database” (MNSOL) for both water and cyclohexane utilizing a correction based on the partial molar volume, yielding a root mean square error (RMSE) of 2.4 kcal mol−1 for water and 0.8–0.9 kcal mol−1 for cyclohexane depending on the parametrization. The second one is treated by employing on one hand an empirical pK a model (MoKa) and, on the other hand, an EC-RISM-derived regression of published acidity constants (RMSE of 1.5 for a single model covering acids and bases). In total, at most 8 adjustable parameters are necessary (2–3 for each solvent and two for the pK a) for training solvation and acidity models. Applying the final models to the log D 7.4 dataset corresponds to evaluating an independent test set comprising other, composite observables, yielding, for different cyclohexane parametrizations, 2.0–2.1 for the RMSE with the first and 2.2–2.8 with the combined first and second SAMPL5 data set batches. Notably, a pure log P model (assuming neutral species only) performs statistically similarly for these particular compounds. The nature of the approximations and possible perspectives for future developments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bannan CC, Burley KH, Mobley DL (2016) J Comput Aided Mol Des (in review)

  2. Beglov D, Roux B (1997) J Phys Chem 101:7821–7826

    Article  CAS  Google Scholar 

  3. Kovalenko A, Hirata F (1998) Chem Phys Lett 290:237–244

    Article  CAS  Google Scholar 

  4. Sato H (2013) Phys Chem Chem Phys 15:7450–7465

    Article  CAS  Google Scholar 

  5. Kloss T, Heil J, Kast SM (2008) J Phys Chem B 112:4337–4343

    Article  CAS  Google Scholar 

  6. Kast SM, Heil J, Güssregen S, Schmidt KF (2010) J Comput Aided Mol Des 24:343–353

    Article  CAS  Google Scholar 

  7. Heil J, Tomazic D, Egbers S, Kast SM (2014) J Mol Model 20:2161

    Article  Google Scholar 

  8. Frach R, Kast SM (2014) J Phys Chem A 118:11620–11628

    Article  CAS  Google Scholar 

  9. Frach R, Kibies P, Böttcher S, Pongratz T, Strohfeldt S, Kurrmann S, Koehler J, Hofmann M, Kremer W, Kalbitzer HR, Reiser O, Horinek D, Kast SM (2016) Angew Chem Int Ed 55:8757–8760

    Article  CAS  Google Scholar 

  10. Frach R, Heil J, Kast SM (2016) Mol Phys. doi:10.1080/00268976.2016.1167266

    Google Scholar 

  11. Hoffgaard F, Heil J, Kast SM (2013) J Chem Theory Comput 9:4718–4726

    Article  CAS  Google Scholar 

  12. Hölzl C, Kibies P, Imoto S, Frach R, Suladze S, Winter R, Marx D, Horinek D, Kast SM (2016) J Chem Phys 144:144104

    Article  Google Scholar 

  13. Ratkova EL, Palmer DS, Fedorov MV (2015) Chem Rev 115:6312–6356

    Article  CAS  Google Scholar 

  14. Sergiievskyi V, Jeanmairet G, Levesque M, Borgis D (2015) J Chem Phys 143:184116

    Article  Google Scholar 

  15. Marenich AV, Kelly CP, Thompson JD, Hawkins GD, Chambers CC, Giesen DK, Winget P, Cramer CJ, Truhlar DG (2012) Minnesoate solvation database—version 2012. University of Minnesota, Minneapolis

    Google Scholar 

  16. Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133–1152

    Article  CAS  Google Scholar 

  17. Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theory Comput 3:2011–2033

    Article  CAS  Google Scholar 

  18. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  19. Marenich AV, Cramer CJ, Truhlar DG (2013) J Chem Theory Comput 9:609–620

    Article  CAS  Google Scholar 

  20. Schuler LD, Daura X, van Gunsteren WF (2001) J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  21. Milletti F, Storchi L, Sforna G, Cruciani G (2007) J Chem Inf Model 47:2172–2181

    Article  CAS  Google Scholar 

  22. Kast SM, Kloss T (2008) J Chem Phys 129:236101

    Article  Google Scholar 

  23. Perkyns J, Pettitt BM (1992) Chem Phys Lett 190:626–630

    Article  CAS  Google Scholar 

  24. Perkyns J, Pettitt BM (1992) J Chem Phys 97:7656–7666

    Article  CAS  Google Scholar 

  25. Kast SM, Schmidt KF, Schilling B (2003) Chem Phys Lett 367:398–404

    Article  CAS  Google Scholar 

  26. Misin M, Fedorov MV, Palmer DS (2016) J Phys Chem B 120:975–983

    Article  Google Scholar 

  27. Klicić JJ, Friesner RA, Liu SY, Guida WC (2002) J Phys Chem A 106:1327–1335

    Article  Google Scholar 

  28. Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) J Phys Chem A 107:9380–9386

    Article  CAS  Google Scholar 

  29. Eckert F, Klamt A (2005) J Comput Chem 27:11–19

    Article  Google Scholar 

  30. RDKit: Open-Source Cheminformatics (version 2013_09_2). http://www.rdkit.org

  31. Sigalov G, Fenley A, Onufriev A (2006) J Chem Phys 124:124902

    Article  Google Scholar 

  32. Case DA et al (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  33. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  34. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2009) Gaussian 09, Rev A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  36. Molecular Networks GmbH, Corina (version 3.49). https://www.mn-am.com/products/corina

  37. LigPrep (version 2.1), Schrödinger, LLC, New York, NY

  38. Frisch MJ et al (2004) Gaussian 03, Rev E.01. Gaussian, Inc., Wallingford

    Google Scholar 

  39. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269

    Article  CAS  Google Scholar 

  40. Maw S, Sato H, Ten-no S, Hirata F (1997) Chem Phys Lett 276:20–25

    Article  CAS  Google Scholar 

  41. Sato H, Hirata F (1999) J Chem Phys 111:8545–8555

    Article  CAS  Google Scholar 

  42. Talman JD (1978) J Comput Phys 29(35):48

    Google Scholar 

  43. Rossky PJ, Friedman HL (1980) J Chem Phys 72(5694):5700

    Google Scholar 

  44. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  45. Chirlian LE, Francl MM (1987) J Comput Chem 8:894–905

    Article  CAS  Google Scholar 

  46. Heil J, Kast SM (2015) J Chem Phys 142:114107

    Article  Google Scholar 

  47. Eckert F, Diedenhofen M, Klamt A (2010) Mol Phys 108:229–241

    Article  CAS  Google Scholar 

  48. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem A 110:2493–2499

    Article  CAS  Google Scholar 

  49. Luchko T, Blinov N, Limon GC, Joyce KP, Kovalenko A (2016) J Comput Aided Mol Des. doi:10.1007/s10822-016-9947-7

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, Grant No. KA 1381/5-1) as well as the Bundesministerium für Bildung und Forschung (BMBF, Grant No. 01IH11002B) for their financial, and the IT and Media Center (ITMC) of the TU Dortmund for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan M. Kast.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tielker, N., Tomazic, D., Heil, J. et al. The SAMPL5 challenge for embedded-cluster integral equation theory: solvation free energies, aqueous pK a, and cyclohexane–water log D . J Comput Aided Mol Des 30, 1035–1044 (2016). https://doi.org/10.1007/s10822-016-9939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9939-7

Keywords

Navigation