Skip to main content
Log in

A simple, fast and convenient new method for predicting the stability of nitro compounds

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A new method has been proposed to understand and predict the stability of nitro compounds. This method uses the maximum electron densities at the critical points of two N–O bonds of nitro groups (ρ max), and it is more simple and faster than the existing methods and applicable to bigger systems. The correlations between the ρ max and total energy (E), bond lengths (\( R_{{{\text{C}}{-}{\text{NO}}_{2} }} \), \( R_{{{\text{N}}{-}{\text{NO}}_{2} }} \) and \( R_{{{\text{O}}{-}{\text{NO}}_{2} }} \)), bond dissociation energy (BDE), and impact sensitivity (h 50) reveal that the molecular stability, which can be reflected by E, R, BDE and h 50, generally decreases with the increasing ρ max. The compound with the larger ρ max is less stable. For the nitrating reaction, the smaller ρ max of the product generally implies the easier and faster reaction and the higher occurrence ratio of the product. Therefore, ρ max can be applied to predict the stability of nitro compounds and the easiness of the nitrating reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Angew Chem Int Edit 45(22):3584–3601

    Article  CAS  Google Scholar 

  2. Cook MA (1958) The science of high explosives, vol 139. RE Krieger Pub Co, Malabar

    Google Scholar 

  3. Urbanski T (1964) Chemistry and technology of explosives, vol 6. Pergamon Press, Oxford

    Google Scholar 

  4. Agrawal JP (1998) Prog Energ Combust 24(1):1–30

    Article  CAS  Google Scholar 

  5. Singh G, Kapoor IPS, Mannan SM, Kaur J (2000) J Hazard Mater 79(1):1–18

    Article  CAS  Google Scholar 

  6. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Ann Rev Mater Res 31(1):291–321

    Article  CAS  Google Scholar 

  7. Shlyapochnikov V, Tafipolsky M, Tokmakov I, Baskir E, Anikin O, Strelenko YA, Luk’yanov O, Tartakovsky V (2001) J Mol Struct 559(1):147–166

    Article  CAS  Google Scholar 

  8. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384(1):187–204

    Article  CAS  Google Scholar 

  9. An C, Li H, Geng X, Li J, Wang J (2013) Propellants Explos Pyrotech 38(2):172–175

    Article  CAS  Google Scholar 

  10. Zhang J, Wu P, Yang Z, Gao B, Zhang J, Wang P, Nie F, Liao L (2014) Propellants Explos Pyrotech 39(5):653–657

    Article  Google Scholar 

  11. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) Cryst Growth Des 12(9):4311–4314

    Article  CAS  Google Scholar 

  12. Bayat Y, Zeynali V (2011) J Energy Mater 29(4):281–291

    Article  CAS  Google Scholar 

  13. Mandal AK, Thanigaivelan U, Pandey RK, Asthana S, Khomane RB, Kulkarni BD (2012) Org Process Res Dev 16(11):1711–1716

    Article  CAS  Google Scholar 

  14. Vo TT, Zhang J, Parrish DA, Twamley B, Shreeve JM (2013) J Am Chem Soc 135(32):11787–11790

    Article  CAS  Google Scholar 

  15. Behrens R Jr, Bulusu S (2013) Defence Sci J 46(5):361–369

    Google Scholar 

  16. Ma H, Feng X, Zhu T, Miao C, Ma Y, Feng M (2012) Chem Propellants Polym Mater 10(4):20–24

    CAS  Google Scholar 

  17. Zhang C (2009) J Hazard Mater 161(1):21–28

    Article  CAS  Google Scholar 

  18. Zhang XL, Gong XD (2014) J Mol Model 20(8):1–11

    Article  Google Scholar 

  19. Thottempudi V, Gao H, Shreeve JM (2011) J Am Chem Soc 133(16):6464–6471

    Article  CAS  Google Scholar 

  20. Ghule VD (2012) J Phys Chem A 116(37):9391–9397

    Article  CAS  Google Scholar 

  21. Wang G, Gong X, Liu Y, Du H, Xu X, Xiao H (2010) J Hazard Mater 177(1):703–710

    Article  CAS  Google Scholar 

  22. Wang G, Gong X, Liu Y, Xiao H (2009) Spectrochim Acta A 74(2):569–574

    Article  Google Scholar 

  23. Ravi P, Gore G, Venkatesan V, Tewari SP, Sikder A (2010) J Hazard Mater 183(1):859–865

    Article  CAS  Google Scholar 

  24. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) J Phys Chem A 109(49):11268–11274

    Article  CAS  Google Scholar 

  25. Delpuech A, Cherville J (1978) Propellants Explos 3(6):169–175

    Article  CAS  Google Scholar 

  26. Delpuech A, Cherville J (1979) Propellants Explos 4(6):121–128

    Article  CAS  Google Scholar 

  27. Bates LR (1986) Paper presented at the Proceedings 13th Symposium on Explosives and Pyrotechnics

  28. Kamlet MJ, Adolph HG (1979) Propellants Explos Pyrotech 4:30–34

    Article  CAS  Google Scholar 

  29. Chemistry Computational (1999) Reviews of Current Trends. World Scientific, River Edge

    Google Scholar 

  30. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107(1):89–97

    Article  CAS  Google Scholar 

  31. Zhang C (2006) Chem Phys 324(2):547–555

    Article  CAS  Google Scholar 

  32. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109(18):8978–8982

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision CO2. Gaussian Gaussian Inc, Wallingford

    Google Scholar 

  34. Bader RF (1991) Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  35. Lu T, Chen F (2012) J Comput Chem 33(5):580–592

    Article  Google Scholar 

  36. Benson SW (1976) Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

  37. Yao XQ, Hou XJ, Wu GS, Xu YY, Xiang HW, Jiao H, Li YW (2002) J Phys Chem A 106(31):7184–7189

    Article  CAS  Google Scholar 

  38. Shao J, Cheng X, Yang X (2005) J Mol Struct Theochem 755(1):127–130

    Article  CAS  Google Scholar 

  39. Fan XW, Ju XH, Xia QY, Xiao HM (2008) J Hazard Mater 151(1):255–260

    Article  CAS  Google Scholar 

  40. Zhang XL, Liu Y, Wang F, Gong XD (2014) Chem Asian J 9(1):229–236

    Article  Google Scholar 

  41. Liu H, Du H, Wang G, Gong X (2012) Struct Chem 23(2):479–486

    Article  CAS  Google Scholar 

  42. Wang GX, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2011) J Comput Chem 32(5):943–952

    Article  Google Scholar 

  43. Liu Y, Wang L, Wang G, Du H, Gong X (2012) J Mol Model 18(4):1561–1572

    Article  CAS  Google Scholar 

  44. Politzer P, Alper HE (1999) Detonation initiation and sensitivity in energetic compounds: some computational treatments, vol 4. World Scientific, Singapore

    Google Scholar 

  45. Ju X-H, Xiao H-M, Xia Q-Y (2003) J Chem Phys 119(19):10247–10255

    Article  CAS  Google Scholar 

  46. Zhang C, Shu Y, Zhao X, Dong H, Wang X (2005) J Mol Struct Theochem 728(1):129–134

    CAS  Google Scholar 

  47. Liu H, Wang F, Wang GX, Gong XD (2012) J Mol Model 18(10):4639–4647

    Article  CAS  Google Scholar 

  48. Liu H, Wang F, Wang GX, Gong XD (2012) J Comput Chem 33(22):1790–1796

    Article  CAS  Google Scholar 

  49. Armstrong R, Coffey C, DeVost V, Elban W (1990) J Appl Phys 68(3):979–984

    Article  CAS  Google Scholar 

  50. Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K, Hoffman D (1997) Propellants Explos Pyrotech 22(5):249–255

    Article  CAS  Google Scholar 

  51. Storm CB, Stine JR, Kramer JF (1990) Paper presented at the chemistry and physics of energetic materials, Dordrecht, The Netherlands

  52. Östmark H, Langlet A, Bergman H, Wingborg N, Wellmar U, Bemm U (1998) Paper presented at the 11th Detonation (International) Symposium, Snowmass

  53. Hall TN, Holden JR (1988) Technical Report NSWC MP-88-116. Naval Surface Warfare Center, Dahlgren

    Google Scholar 

  54. Rice BM, Hare JJ (2002) J Phys Chem A 106(9):1770–1783

    Article  CAS  Google Scholar 

  55. Akhavan J (2011) The chemistry of explosives, 3rd edn. The Royal Society of Chemistry, London

  56. Urbanski T (1964) Chemistry and technology of explosives, vol 1. Pergamon Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, X. A simple, fast and convenient new method for predicting the stability of nitro compounds. J Comput Aided Mol Des 29, 471–483 (2015). https://doi.org/10.1007/s10822-015-9837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9837-4

Keywords

Navigation