Skip to main content

Advertisement

Log in

Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes as nanocarrier for loading and delivery of pyrazinamide antitubercular drug onto pncA protein

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The potential biomedical application of carbon nanotubes (CNTs) pertinent to drug delivery is highly manifested considering the remarkable electronic and structural properties exhibited by CNT. To simulate the interaction of nanomaterials with biomolecular systems, we have performed density functional calculations on the interaction of pyrazinamide (PZA) drug with functionalized single-wall CNT (fSWCNT) as a function of nanotube chirality and length using two different approaches of covalent functionalization, followed by docking simulation of fSWCNT with pncA protein. The functionalization of pristine SWCNT facilitates in enhancing the reactivity of the nanotubes and formation of such type of nanotube-drug conjugate is thermodynamically feasible. Docking studies predict the plausible binding mechanism and suggests that PZA loaded fSWCNT facilitates in the target specific binding of PZA within the protein following a lock and key mechanism. Interestingly, no major structural deformation in the protein was observed after binding with CNT and the interaction between ligand and receptor is mainly hydrophobic in nature. We anticipate that these findings may provide new routes towards the drug delivery mechanism by CNTs with long term practical implications in tuberculosis chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Reich S, Thomsen C, Maultzsch J (2004) Carbon nanotubes: basic concepts and physical properties. Wiley-VCH, Weinheim 215

    Google Scholar 

  2. Challa SS, Kumar R, Hormes J, Leuschner C (2005) Nanofabrication towards biomedical applications, techniques, tools, applications and impact. Wiley-VCH, Weinheim, pp 236–289

    Google Scholar 

  3. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  Google Scholar 

  4. Kam NWS, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577–581

    Article  CAS  Google Scholar 

  5. Liu Y, Wu D-C, Zhang W-D, Jiang X, He C-B, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 44(30):4782–4785

    Article  CAS  Google Scholar 

  6. Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476

    Article  CAS  Google Scholar 

  7. Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493

    Article  CAS  Google Scholar 

  8. Smith DA, van de Waterbeemd H (1999) Pharmacokinetics and metabolism in early drug discovery. Curr Opin Chem Biol 3(4):373–378

    Article  CAS  Google Scholar 

  9. Besteman K, Lee JO, Wiertz FGM, Herring HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730

    Article  CAS  Google Scholar 

  10. Chen X, Tam UC, Czlapinski JL, Lee GS, Rabuka D, Zettl A, Bertozzi CR (2006) Interfacing carbon nanotubes with living cells. J Am Chem Soc 128(19):6292–6293

    Article  CAS  Google Scholar 

  11. Kang Y, Wang Q, Liu YC, Shen JW, Wu T (2010) Diameter selectivity of protein encapsulation in carbon nanotubes. J Phys Chem B 114(8):2869–2875

    Article  CAS  Google Scholar 

  12. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. M Chem Commun 5:571–577

    Article  Google Scholar 

  13. Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Del Rev 58(14):1460–1470

    Article  CAS  Google Scholar 

  14. Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand JP, Muller S, Prato CD (2005) Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J Am Chem Soc 127(1):58–59

    Article  CAS  Google Scholar 

  15. Chełmecka E, Pasterny K, Kupka T, Stobiński L (2012) DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes. J Mol Model 18(5):2241–2246

    Article  Google Scholar 

  16. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand J-P, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 44(39):6358–6362

    Article  CAS  Google Scholar 

  17. Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1(1):50–57

    Article  Google Scholar 

  18. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5:571–577

    Article  Google Scholar 

  19. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF, Li L, Tan LP (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47(18):5235–5237

    Article  CAS  Google Scholar 

  20. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS (2006) Chemical modification of SWNT alters in vitro cell-SWNT interactions. J Biomed Mater Res Part A 76A:614–625

    Article  CAS  Google Scholar 

  21. Murugesan S, Park TJ, Yang H, Mousa S, Linhardt RJ (2006) Blood compatible carbon nanotubes-nano-based neoproteoglycans. Langmuir 22(8):3461–3463

    Article  CAS  Google Scholar 

  22. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–544

    Article  CAS  Google Scholar 

  23. Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3(9):2740–2750

    Article  CAS  Google Scholar 

  24. Saikia N, Deka RC (2011) Density functional calculations on adsorption of 2-methylheptylisonicotinate antitubercular drug onto functionalized carbon nanotube. Comput Theor Chem 964:257–261

    Article  CAS  Google Scholar 

  25. Saikia N, Pati SK, Deka RC (2012) First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule. Appl Nanosci. doi:10.1007/s13204-012-0124-6

    Google Scholar 

  26. Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm 3(4):407–414

    Article  CAS  Google Scholar 

  27. Popov AM, Lozovik YE, Fiorito S, Yahia L (2007) Biocompatibility and applications of carbon nanotubes in medical nanorobots. Int J Nanomed 2:361–372

    CAS  Google Scholar 

  28. Sung J, Barone PW, Kong H, Strano MS (2009) Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube fluorescence based micro-capillary implantable sensors. Biomaterials 30(4):622–631

    Article  CAS  Google Scholar 

  29. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Article  Google Scholar 

  30. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun 21:1182–1184

    Article  Google Scholar 

  31. Zanella I, Fagan SB, Mota R, Fazzio A (2007) Ab initio study of pristine and Si-doped capped carbon nanotubes interacting with nimesulide molecules. Chem Phys Lett 439:348–353

    Article  CAS  Google Scholar 

  32. Liu Z, Winters M, Holodniy M, Dai H (2007) siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed 46(12):2023–2027

    Article  CAS  Google Scholar 

  33. Zerda ADL, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen X, Dai H, Khuri-Yakub BT, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562

    Article  Google Scholar 

  34. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  CAS  Google Scholar 

  35. Cole ST, Eisenach KD, McMurray DN, Jacobs WR Jr (eds) (2005) Tuberculosis and the tubercle bacillus. ASM Press, Washington

    Google Scholar 

  36. Maher D, Chaulet P, Spinaci S, Harries A (1997) Treatment of tuberculosis: guidelines for national programmes. Wold Health Organization, Geneva

    Google Scholar 

  37. Petrella S, Gelus-Ziental N, Maudry A, Laurans C, Boudjelloul R, Sougakoff W (2011) Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS ONE 6:e15785. doi:10.1371/journal.pone.0015785

    Article  CAS  Google Scholar 

  38. Konno K, Feldmann FM, McDermott W (1967) Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respipr Dis 95(3):461–469

    CAS  Google Scholar 

  39. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2(6):662–667

    Article  CAS  Google Scholar 

  40. Sheen P, Ferrer P, Gilman RH, Llano JL, Fuentes P, Valencia E, Zimic MJ (2009) Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis 89(2):109–113

    Article  CAS  Google Scholar 

  41. Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH (2001) Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochem 40(47):14166–14172

    Article  CAS  Google Scholar 

  42. Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W (2001) Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J 353:453–458

    Article  CAS  Google Scholar 

  43. Gallo M, Favila A, Glossman-Mitnik D (2007) DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem Phys Lett 447(1–3):105–109

    Article  CAS  Google Scholar 

  44. Saikia N, Deka RC (2010) Theoretical study on pyrazinamide adsorption onto covalently functionalized (5,5) metallic single-walled carbon nanotube. Chem Phys Lett 500(1–3):65–70

    Article  CAS  Google Scholar 

  45. Saikia N, Deka RC (2012) A comparison of the effect of nanotube chirality and electronic properties on the π–π interaction of single-wall carbon nanotubes with pyrazinamide antitubercular drug. Int J Quant Chem. doi:10.1002/qua.24275

    Google Scholar 

  46. Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124(5):760–761

    Article  CAS  Google Scholar 

  47. Lu X, Tian F, Xu X, Wang N, Zhang Q (2003) Theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n, n) armchair single-wall carbon nanotubes. J Am Chem Soc 125(34):10459–10464

    Article  CAS  Google Scholar 

  48. Yao Z, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes-preparation and characterization of nanocomposites. J Am Chem Soc 125(51):16015–16024

    Article  CAS  Google Scholar 

  49. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237

    CAS  Google Scholar 

  50. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  51. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  52. Pauling L (1960) The nature of chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  53. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  54. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH GMBH, Weinheim

    Book  Google Scholar 

  55. Mulliken RS (1934) Electronic structures of molecules. XI. Electroaffinity, molecular orbitals and dipole moments. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  56. Seal A, Aykkal R, Babu RO, Ghosh M (2011) Docking study of HIV-1 reverse transcriptase with phytochemicals. Bioinformation 5(10):430–439

    Article  Google Scholar 

  57. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321

    Article  CAS  Google Scholar 

  58. Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces; technical report. International Computer Science Institute, Berkley

    Google Scholar 

  59. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55(2):288–304

    Article  CAS  Google Scholar 

  60. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  61. Lu X, Tian F, Xu X, Wang N, Zhang Q (2003) A theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n, n) armchair single-wall carbon nanotubes. J Am Chem Soc 125(34):10459–10464

    Article  CAS  Google Scholar 

  62. Girifalco LA, Hodak M (2002) Van der Waals binding energies in graphitic structures. Phys Rev B 65(125404):1–5

    Google Scholar 

  63. Borstnik U, Hodoscek M, Janezic D, Lukovits I (2005) Electronic structure properties of carbon nanotubes obtained by density functional calculations. Chem Phys Lett 411(4–6):384–388

    Article  CAS  Google Scholar 

  64. Unissa AN, Selvakumar N, Hassan S (2009) Insight to pyrazinamide resistance in Mycobacterium tuberculosis by molecular docking. Bioinformation 4(1):24–29

    Article  Google Scholar 

  65. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667

    Article  CAS  Google Scholar 

  66. Zhang H, Deng JY, Bi LJ, Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE (2008) Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. FEBS J 275(4):753–762

    Article  CAS  Google Scholar 

  67. Prentis RA, Lis Y, Walker SR (1988) Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmac 25(3):387–396

    Article  CAS  Google Scholar 

  68. Egan WJ, Merz KM Jr, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43(21):3867–3877

    Article  CAS  Google Scholar 

  69. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) Prediction of hydrophobic (Lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALOGP and CLOGP methods. J Phys Chem 102:3762–3770

    Article  CAS  Google Scholar 

  70. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, Beck G, Sherborne B, Cooper I, Platts JA (2001) Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci 90(6):749–784

    Article  CAS  Google Scholar 

  71. Yee S (1997) In vitro permeability across Caco-2 cells (Colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm Res 14(6):763–766

    Article  CAS  Google Scholar 

  72. Bemis GW, Murcko MA (1992) Designing libraries with CNS activity. J Med Chem 42(24):4942–4951

    Google Scholar 

  73. Yazdanian M, Glynn SL, Wright JL, Hawi A (1998) Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res 15(9):1490–1494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the funding from the Department of Science and Technology (DST), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Supplementary material 2 (DOC 5877 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saikia, N., Rajkhowa, S. & Deka, R.C. Density functional and molecular docking studies towards investigating the role of single-wall carbon nanotubes as nanocarrier for loading and delivery of pyrazinamide antitubercular drug onto pncA protein. J Comput Aided Mol Des 27, 257–276 (2013). https://doi.org/10.1007/s10822-013-9638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9638-6

Keywords

Navigation