Skip to main content
Log in

Taken with a Grain of Salt: Experimentation and the Chemistry of Archaeological Ceramics from Xaltocan, Mexico

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Neutron activation analysis (NAA) of ceramics from Xaltocan (n = 651) displays high values for sodium and potassium and low concentrations of many transition metals and rare earth elements compared to other sites in the Basin of Mexico. Given that Xaltocan was situated on an island in the middle of a saline lake, the potential reasons for this chemical signature are diverse. On one hand, if the sodium and potassium were elevated due to some behavioral aspect of the potters, the Xaltocan chemical groups provide a glimpse at the behaviors of Xaltocan potters that permit more precise source designations. On the other hand, if this chemical fingerprint arose due to contamination in a saline post-depositional environment, the Xaltocan chemical groups would not be valid references for provenance studies. To evaluate these alternative hypotheses, we employ several lines of evidence: (1) comparison of the Xaltocan ceramics to over 5,000 NAA assays of clays and ceramics from the Basin of Mexico, (2) experimental doping of clays with water of different salinities and fired to different temperatures, (3) leaching experiments of archaeological pottery sherds (n = 22) recovered from the site of Xaltocan, and (4) laser ablation–inductively coupled plasma–mass spectrometry of the clay and temper fraction of a small sample of Xaltocan ceramics to determine which component is responsible for the elevated sodium and potassium values. The results suggest that the high sodium and potassium values were present in the ceramic paste before firing. We then use these newly established reference groups to better understand the role of Xaltocan in the regional economy. The type of experimentation employed in this study has proven to be an important method for determining the behaviors of ancient potters and distinguishing them from post-depositional processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. From the Nahuatl term tequisquitl which refers to the salty crusts deposited along saline lake rims when the water level lowers due to dessication (Parsons 2001, p. 146)

  2. It must be kept in mind that raw clay sampling across the Basin of Mexico is highly localized and not representative of the whole region. Interpolated values are based on a Gaussian function built into ArcGIS 10. Interpolations close to actual data points are most reliable.

  3. Clay soils in the Basin are mostly vertisol and feozem, both of which consist of highly absorptive clay minerals.

  4. Voids are also formed by the bubbling of gases (such as CO2) that get caught within the glassy phase of the ceramic.

  5. It should be noted that K2CO3 was substituted for KCl due to cost and availability.

  6. Though, it should be noted that tequesquite minerals form primarily on the surface.

  7. The rise in sodium or potassium specimens after leaching could result from the leaching of other components thereby concentrating these elements. Alternatively, sample bias and instrumental error may contribute to the elevated numbers.

  8. These were almost all Early Postclassic wares that are rare or absent at the site of Xaltocan itself.

References

  • Abbott, D. R. (2008). The process, location, and history of Hohokam Buff ware production: some experimental and analytical results. Journal of Archaeological Science, 35(2), 388–397.

    Article  Google Scholar 

  • Aréchiga Córdoba, E. (2004). El desagüe del Valle de México, siglos XVI-XXI: Una historia paradójica. Arqueología Mexicana, 12(68), 60–65.

    Google Scholar 

  • Arnold, D. E. (1971). Ethnomineralogy of Ticul, Yucatan potters: etics and emics. American Antiquity, 36(1), 20–40.

    Article  Google Scholar 

  • Arnold, D.E. (1985). Ceramic theory and cultural process. Cambridge: Cambridge University Press.

  • Arnold, P. J., III. (1991). Domestic ceramic production and spatial organization: a Mexican case study in ethnoarchaeology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Arnold, D. E., Neff, H., & Bishop, R. L. (1991). Compositional analysis and “sources” of pottery: an ethnoarchaeological approach. American Anthropologist, 93(1), 70–90.

    Article  Google Scholar 

  • Bearat, H., Dufournier, D., Nguyen, N., & Raveau, B. (1989). Influence de NaCl Sur la Couleur et la Composition Chimique des Pates Ceramiques Calcaires au Cours de Leur Cuisson. Revue d'Archéometrie, 13, 43–53.

    Google Scholar 

  • Bishop, R. L. (1980). Aspects of ceramic compositional modeling. In R. E. Fry (Ed.), Models and methods in regional exchange (pp. 47–65). Washington, DC: Society for American Archaeology.

    Google Scholar 

  • Bishop, R. L., Rands, R. L., & Holley, G. R. (1982). Ceramic compositional analysis in archaeological perspective. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 5, pp. 275–330). New York: Academic.

    Google Scholar 

  • Blackman, M. J., & Bishop, R. L. (2007). The Smithsonian–NIST partnership: the application of instrumental neutron activation analysis to archaeology. Archaeometry, 49(2), 321–341.

    Article  Google Scholar 

  • Blanton, R. E. (1996). The Basin of Mexico market system and the growth of empire. In M. E. Smith & F. F. Berdan (Eds.), Aztec imperial strategies. Washington, DC: Dumbarton Oaks.

    Google Scholar 

  • Bonifay, M. (2004). Études sur la Céramique Romaine Tardive d'Afrique. Oxford: BAR-IS.

    Google Scholar 

  • Boulanger, M.T., Fehrenbach, S., & Glascock, M.D. (2012). Experimental evaluation of sample-extraction methods and potential for contamination in ceramic specimens. Archaeometry. doi:10.1111/j.1475-4754.2012.00706.x

  • Bourdieu. (1977). Outline of a theory of practice (R. Nice, Trans.). Cambridge: University of Cambridge Press.

    Google Scholar 

  • Bourdieu, P. (1990). The Logic of Practice. Palo Alto: Stanford University Press.

  • Brumfiel, E. M. (1991). Tribute and commerce in imperial cities: the case of Xaltocan, Mexico. In H. J. M. Claessen, P. van de Velde (Eds.), Early state economics (pp. 177–198). New Brunswick: Transaction.

  • Brumfiel, E. M. (2005a). Conclusions. In E. M. Brumfiel (Ed.), Production and power at Postclassic Xaltocan (pp. 349–368). Pittsburgh: University of Pittsburgh.

    Google Scholar 

  • Brumfiel, E. M. (Ed.). (2005b). Production and power at Postclassic Xaltocan. Pittsburgh: University of Pittsburgh.

    Google Scholar 

  • Brumfiel, E. M., & Hodge, M. D. (1996). Interaction in the Basin of Mexico: the case of Postclassic Xaltocan. In A. Guadalupe Mastache de Escobar (Ed.), Arqueología Mesoamericana: Homenaje a William T. Sanders (pp. 417–437). México: Instituto Nacional de Antropología e Historia, Arqueología Mexicana.

    Google Scholar 

  • Burton, J. H., & Simon, A. W. (1993). Acid extraction as a simple and inexpensive method for compositional characterization of archaeological ceramics. American Antiquity, 58(1), 45–59.

    Google Scholar 

  • Buxeda i Garrigos, J. (1999). Alteration and contamination of archaeological ceramics: the pertubation problem. Journal of Archaeological Science, 26(3), 295–313.

    Article  Google Scholar 

  • Buxeda i Garrigos, J., Mommsen, H., & Tsolakidou, A. (2002). Alterations of Na, K and Rb concentrations in Mycenaean pottery and a proposed explanation using X-ray diffraction. Archaeometry, 44(2), 187–198.

    Article  Google Scholar 

  • Carpenter, A. J., & Feinman, G. M. (1999). The effects of behaviour on ceramic composition: implications for the definition of production locations. Journal of Archaeological Science, 26(7), 783–796.

    Google Scholar 

  • Carrasco, P. (1999). The Tenochca Empire of Ancient Mexico: the Triple Alliance of Tenochtitlán, Tetzcoco, and Tlacopan. Norman: University of Oklahoma Press.

    Google Scholar 

  • Chimonas, S. (2005). Occupational history of Prehispanic Xaltocan. In E. M. Brumfiel (Ed.), Production and power at Postclassic Xaltocan (pp. 169–194). Pittsburgh: University of Pittsburgh.

  • Cortés, H. (1970). Cartas de Relación. México: Porrúa.

    Google Scholar 

  • Crider, D. L. (2011). Epiclassic and Early Postclassic Interaction in Central Mexico as evidenced by decorated pottery. Ph.D. dissertation, Arizona State University, Tempe, AZ.

  • Croissier, M. M. (2007). The Zapotec presence at Teotihuacan, Mexico: political ethnicity and domestic identity. Urbana-Champaign: University of Illinois.

    Google Scholar 

  • Day, P. M., & Kilikoglou, V. (2001). Analysis of ceramics from the kiln. Hesperia Supplement, 30, 111–133.

    Article  Google Scholar 

  • Day, P. M., Kiriatzi, E., Tsolakidou, A., & Kilikoglou, V. (1999). Group therapy in Crete: a comparison between analyses by NAA and thin section petrography of Early Minoan pottery. Journal of Archaeological Science, 26(8), 1025–1036.

    Article  Google Scholar 

  • De Lucia, K. (2011). Domestic economies and regional transition: household production and consumption in Early Postclassic Mexico. Evanston: Northwestern University.

    Google Scholar 

  • Cuomo di Caprio, N. (1991). Ceramiche Invetriate Medievali di Agrigento e Delia: Analisi stereoscopica, mineralogico-petrografica e SEM/EDS. In S. Scuto (Ed.), L'eta di Federico II Nella Sicilia Centro Meridionale (pp. 171–183). Rome: Atti Delle Giomate di Studio.

  • Dussubieux, L., Golitko, M., Williams, P. R., & Speakman, R. J. (2007). Laser ablation-inductively coupled plasma-mass spectrometry analysis applied to the characterization of Peruvian Wari ceramics. In M. D. Glascock, R. J. Speakman, & R. S. Popelka-Filcoff (Eds.), Archaeological chemistry: analytical techniques and archaeological interpretation (ACS Symposium Series No. 968) (pp. 349–363). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Flores, T. (1918). El tequesquite del Lago de Texcoco. México: Departamento de Talleres Graficos de la Secretaria de Fomento.

    Google Scholar 

  • Frederick, C. D., Winsborough, B., & Popper, V. S. (2005). Geoarchaeological Investigations in the Northern Basin of Mexico. In E. M. Brumfiel (Ed.), Production and Power at Postclassic Xaltocan (pp. 71–116). Pittsburgh: University of Pittsburgh.

    Google Scholar 

  • Galván Moreno, J. (1945). Cristalización fraccionada por evaporación solar de las aguas del lago de Texcoco. México: Universidad Nacional Autónoma de México.

  • Garraty, C. P. (2006). Aztec Teotihuacan: political processes at a Postclassic and early Colonial city-state in the Basin of Mexico. Latin American Antiquity, 17(4), 363–387.

    Article  Google Scholar 

  • Garraty, C. P. (2007). Intercambio de mercado y consolidación en el corazón del Imperio Azteca. Revista Española de Antropología Americana, 37(2), 139–164.

    Google Scholar 

  • Gibson, C. (1964). The Aztecs under Spanish rule. Palo Alto: Stanford University Press.

  • Giddens, A. (1979). Central problems in social theory: action, structure, and contradiction in social analysis. Berkeley: University of California Press.

  • Glascock, M. D. (1992). Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In H. Neff (Ed.), Chemical characterization of ceramic pastes in archaeology (pp. 11–26). Madison: Prehistory.

    Google Scholar 

  • Golitko, M., Dudgeon, J. V., Neff, H., & Terrell, J. E. (2012). Identification of post-depositional chemical alteration of ceramics from the north coast of New Guinea (Sandaun Province) by time of flight–laser ablation–inductively coupled plasma–mass spectrometry (TOPF–LA–ICP–MS). Archaeometry, 54(1), 80–100.

    Article  Google Scholar 

  • Gosselain, O. P. (1992). Bonfire of the enquiries: pottery firing temperatures in archaeology—what for? Journal of Archaeological Science, 19(3), 243–259.

    Article  Google Scholar 

  • Gosselain, O. P. (2000). Materializing identities: an African perspective. Journal of Archaeological Method and Theory, 7(3), 187–217.

    Article  Google Scholar 

  • Gratuze, B., Blet-Lemarquand, M., & Barrandon, J.-N. (2001). Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. Journal of Radioanalytical and Nuclear Chemistry, 247(3), 645–656.

    Article  Google Scholar 

  • Hamilton, D. L. (1997). Basic methods of conserving underwater archaeological material culture. Manuscript on file at the Department of Anthropology, Nautical Archaeology Program, Texas A&M University, College Station.

  • Hassig, R. (2006). Mexico and the Spanish conquest (2nd ed.). Norman: University of Oklahoma Press.

    Google Scholar 

  • Hicks, F. (1994). Xaltocan under Mexica Domination. In Caciques and their people: a volume in honor of Ronald Spores (Vol. 89, pp. 67–85). Ann Arbor: Anthropological Papers, Museum of Anthropology, University of Michigan

  • Hodge, M. G., & Neff, H. (2005). Xaltocan in the economy of the Basin of Mexico: a view from ceramic tradewares. In E. M. Brumfiel (Ed.), Production and power at Postclassic Xaltocan (pp. 320–348). Mexico, D.F.: INAH.

    Google Scholar 

  • Hodge, M.G., Blackman, M.J., Minc, L.D., & Neff, H. (1992). Compositional perspective on ceramic production in the Aztec empire. Chemical Characterization of Ceramic Pastes in Archaeology, 203–220

  • Hodge, M. G., Blackman, M. J., Mine, L. D., & Neff, H. (1993). Black-on-orange ceramic production in the Aztec empire's heartland. Latin American Antiquity, 4(2), 130–157.

    Article  Google Scholar 

  • Kilikoglou, V., Maniatis, Y., & Grimanis, A. P. (1988). The effect of purification and firing of clays on trace element provenance studies. Archaeometry, 30(1), 37–46.

    Article  Google Scholar 

  • Kolb, C. C. (1988). Cultural ecology of Classic Teotihuacan Period Copoid ceramics. In Pot for all reasons: ceramic ecology revisited (pp. 147–197). Philadelphia: Laboratory of Anthropology, Temple University

  • Larson, D. O., Sakai, S., & Neff, H. (2005). LA–ICP–MS as a bulk chemical characterization technique: comparison of LA–ICP–MS, MD–ICP–MS, and INAA data on Virgin Branch Azasazi ceramics. In R. J. Speakman & H. Neff (Eds.), Laser ablation ICP–MS in archaeological research (pp. 94–103). Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Lemonnier, P. (1992). Elements for an anthropology of technology. Ann Arbor: Museum of Anthropology, University of Michigan.

    Google Scholar 

  • Livingstone-Smith, A. (2000). Bonfire II: the return of pottery firing temperatures. Journal of Archaeological Science, 28, 991–1003.

    Article  Google Scholar 

  • Longacre, W. A., Xia, J., & Yang, T. (2000). I want to buy a black pot. Journal of Archaeological Method and Theory, 7(4), 273–293.

    Article  Google Scholar 

  • Mathes, W. M. (1970). To save a city: the Desaque of Mexico-Huehuetoca, 1607. The Americas, 26(4), 419–438.

    Article  Google Scholar 

  • Matson, F. P. (1971). A study of temperatures used in firing ancient Mesopotamian pottery. In R. H. Brill (Ed.), Science and archaeology (pp. 65–79). Cambridge: MIT.

    Google Scholar 

  • Millhauser, J. K. (2012). Saltmaking, craft, and community at Late Postclassic and Early Colonial San Bartolome Salinas, Mexico. Doctoral dissertation, Northwestern University.

  • Millhauser, J. K., Rodríguez-Alegría, E., & Glascock, M. D. (2011). Testing the accuracy of portable X-ray fluorescence to study Aztec and Colonial obsidian supply at Xaltocan, Mexico. Journal of Archaeological Science, 38(11), 3141–3152. doi:10.1016/j.jas.2011.07.018.

    Article  Google Scholar 

  • Minc, L.D. (1994). Political economy and market economy under Aztec rule: a regional perspective based on decorated ceramic production and distribution systems in the valley of Mexico. Ph.D. dissertation, University of Michigan, Ann Arbor, MI.

  • Mitchem, J. M. (1982). Experiments in the manufacturing technology of Pasco series ceramics from peninsular Florida. Paper presented at the Paper presented at the 39th annual Southeastern Archaeological Conference, Memphis, Tennessee.

  • Montoya Riviero, M.C. (1999). Del desagüe del Valle de México al drenaje profundo. México Desconocido, 30.

  • Morehart, C. T. (2010). The archaeology of farmscapes: production, place, and the materiality of landscape at Xaltocan, Mexico. Evanston: Northwestern University.

    Google Scholar 

  • Morehart, C. T., & Eisenberg, D. T. A. (2010). Prosperity, power, and change: modeling maize at Postclassic Xaltocan, Mexico. Journal of Anthropological Archaeology, 29, 94–112.

    Article  Google Scholar 

  • Neff, H. (2000). Neutron activation analysis for provenance determination in archaeology. In E. C. a. G. Spoto (Ed.), Modern analytical methods in art and archaeology (pp. 81–134). New York: Wiley.

  • Neff, H. (2012). Comment: Chemical and mineralogical approaches to ceramic provenance determination. Archaeometry, 54(2), 244–249.

    Google Scholar 

  • Neff, H., Bishop, R. L., & Sayre, E. V. (1988). Simulation approach to the problem of tempering in compositional studies of archaeological ceramics. Journal of Archaeological Science, 15(2), 159–172.

    Article  Google Scholar 

  • Neff, H., Sayre, E. V., & Bishop, R. L. (1989). More observations on the problem of tempering in compositional studies of archaeological ceramics. Journal of Archaeological Science, 16(1), 57–69.

    Article  Google Scholar 

  • Neff, H., Cogswell, J. W., & Ross, L. M. J. (2003). Supplementing bulk chemistry in archaeological ceramic provenance investigations. In L. van Zelst (Ed.), Patterns and process: a festschrift in honor of Dr. Edward V. Sayre (pp. 201–226). Washington, DC: Smithsonian Center for Materials Research and Education.

  • Nichols, D. L., Brumfiel, E. M., Neff, H., Hodge, M., Charlton, T. H., & Glascock, M. D. (2002). Neutrons, markets, cities, and empires: a 1000-year perspective on ceramic production and distribution in the Postclassic Basin of Mexico. Journal of Anthropological Archaeology, 21(1), 25–82.

    Article  Google Scholar 

  • Nichols, D. L., Elson, C., Cecil, L. G., Neivens de Estrada, N., Glascock, M. D., & Mikkelsen, P. (2009). Chiconautla, Mexico: a crossroads of Aztec trade and politics. Latin American Antiquity, 20(3), 443–472.

    Google Scholar 

  • Overholtzer, L. (2012). Empires and everyday material practices: a household archaeology of Aztec and Spanish imperialism at Xaltocan, Mexico. Evanston: Northwestern University.

    Google Scholar 

  • Overholtzer, L., & Stoner, W. D. (2011). Merging the social and the material: life histories of ancient mementos from central Mexico. Journal of Social Archaeology, 11(2).

  • Palerm, A. (1973). Obras hidráulicas prehispánicas en el sistema lacustre del valle de México. México, D.F.: Instituto Nacional de Antropología.

  • Parsons, J. R. (2001). The Last Saltmakers of Nexquipayac, Mexico: An Archaeological Ethnography. Ann Arbor: University of Michigan Museum of Anthropology.

    Google Scholar 

  • Peters, J. M. (2002). A compositional analysis of plainwares from Xaltocan, Mexico. Lux Fiat, 1, 149–157.

    Google Scholar 

  • Picon, M. (1991). quelques observations complementaires sur les alterations de composition des ceramiques au cours du temps: Cas de quelques alcalins et alcalino-terreux. Revue d'Archéometrie, 15, 117–122.

    Google Scholar 

  • Pool, C. A. (1990). Ceramic production, resource procurement, and exchange at Matacapan, Veracruz, Mexico. Ph.D. dissertation, Tulane University, New Orleans.

  • Pool, C. A. (2000). Why a kiln? Firing technology in the Sierra de los Tuxtlas, Veracruz (Mexico). Archaeometry, 42(1), 61–76.

    Article  Google Scholar 

  • Reina, R. E., & Hill, R. M. (1974). The traditional pottery of Guatemala. Austin: University of Texas Press.

    Google Scholar 

  • Rice, P. M. (2005). Pottery analysis: a sourcebook. Chicago: University of Chicago Press

  • Rodríguez-Alegría, E. (2008a). De la Edad de Piedra a la Edad de más Piedra. Cuadernos de Arqueología Mediterránea, XVII, 15–30.

    Google Scholar 

  • Rodríguez-Alegría, E. (2008b). Narratives of conquest, colonialism, and cutting-edge technology. American Anthropologist, 110(1), 33–41.

    Article  Google Scholar 

  • Rodríguez-Alegría, E. (2010). Incumbents and challengers: indigenous politics and the adoption of Spanish material culture in colonial Xaltocan, Mexico. Historical Archaeology, 44(2), 51–71.

    Google Scholar 

  • Rye, O. S. (1976). Keeping your temper under control. Archaeology and Physical Anthropology in Oceania, XI(2), 106–137.

    Google Scholar 

  • Rye, O. S. (1981). Pottery technology: principles and reconstruction. Washington, D.C.: Taraxacum.

  • Rye, O. S., & Evans, C. (1976). Traditional pottery techniques of Pakistan: field and laboratory studies. Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Sanders, W. T., Parsons, J., & Santley, R. S. (1979). The Basin of Mexico: ecological processes in the evolution of civilization. New York: Academic.

    Google Scholar 

  • Sayre, E. V., & Harbottle, G. (1979). The analysis by neutron activation of archaeological ceramics related to Teotihuacan: local wares and trade sherds. Brookhaven National Laboratory, Informal Report C-2250.

  • Sayre, E. V., Dodson, R. W., & Burr Thompson, D. (1957). Neutron activation study of Mediterranean potsherds. American Journal of Archaeology, 61(1), 35–41.

    Article  Google Scholar 

  • Schiffer, M. B., & Skibo, J. M. (1987). Theory and experiment in the study of technological change. Current Anthropology, 28(5), 595–622.

    Google Scholar 

  • Schiffer, M. B., & Skibo, J. M. (1997). The explanation of artifact variability. American Antiquity, 62, 27–50.

    Google Scholar 

  • Schwedt, A., & Mommsen, H. (2004). Clay paste mixtures identified by neutron activation analysis in pottery of a Roman workshop in Bonn, Germany. Journal of Archaeological Science, 31(9), 1251–1258.

    Google Scholar 

  • Schwedt, A., & Mommsen, H. (2007). On the influence of drying and firing of clay on the formation of trace element concentration profiles within pottery. Archaeometry, 49(3), 495–509.

    Article  Google Scholar 

  • Schwedt, A., Mommsen, H., & Zacharias, N. (2004). Post-depositional elemental alterations in pottery: neutron activation analyses of surface and core samples. Archaeometry, 46(1), 85–101.

    Article  Google Scholar 

  • Sillar, B. (2000). The challenge of [technological choices] for materials science approaches in archaeology. Archaeometry, 42, 2–20.

    Article  Google Scholar 

  • Sillar, B., & Tite, M. S. (2000). The challenge of 'technological choices' for materials science approaches in archaeology. Archaeometry, 42(1), 2–20.

    Google Scholar 

  • Speakman, R. J., & Neff, H. (2005). The application of laser ablation ICP–MS to the study of archaeological materials—an introduction. In R. J. Speakman & H. Neff (Eds.), Laser ablation ICP–MS in archaeological research (pp. 1–15). Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Stark, M. T. (Ed.). (1998). The archaeology of social boundaries. Washington, DC: Smithsonian Institution.

    Google Scholar 

  • Stark, M. T., Bishop, R. L., & Miksa, E. J. (2000). Ceramic technology and social boundaries: cultural practices in Kalinga clay selection and use. Journal of Archaeological Method and Theory, 7(4), 295–331.

    Article  Google Scholar 

  • Stoner, W. D., & Glascock, M. D. (2012). The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA–ICP–MS. Journal of Archaeological Science, 39(8), 2668–2683.

    Article  Google Scholar 

  • Stoner, W. D., Pool, C. A., Neff, H., & Glascock, M. D. (2008). Exchange of coarse orange pottery in the Middle Classic Tuxtla Mountains, Southern Veracruz, Mexico. Journal of Archaeological Science, 35(5), 1412–1426.

    Article  Google Scholar 

  • Tsolakidou, A., Kilikoglou, V., Kiriatzi, E., & Day, P. M. (2002). Investigating petrological and chemical groupings of early Minoan cooking vessels. In V. Kilikoglou, A. Hein, & Y. Maniatis (Eds.), Modern trends in scientific studies on ancient ceramics. BAR International Series 1011 (pp. 19–33). Oxford: Archaeopress.

Download references

Acknowledgments

This research was made possible, in part, through NSF grants #1110793 and #0922374 awarded to the University of Missouri Research Reactor. Additionally, NSF grant #1035319, awarded to John K. Millhauser. Millhauser, funded the initial analysis that led to the redefinition of the Xaltocan ceramic sample into new reference groups. Assistance with preparing samples was provided by Timothy Ferguson, Cody Roush, and Erin Gillespie. We also wish to thank researchers who have submitted samples from Xaltocan over the years, including the late Elizabeth Brumfiel, the late Mary Hodge, Deborah Nichols, Destiny Crider, Christopher Garraty, and Kristen De Lucia. Their initiative has made the Basin of Mexico one of the most thoroughly researched regions through NAA. Discussions with a number of other colleagues, including Jeffrey Ferguson, Matthew Boulanger, and Jaume Buxeda, also helped to facilitate the design of this research or to point out examples in the literature that have conducted similar experiments. James Guthrie helped to run a subsample of saline solution and leached liquids through the ICP–MS. Barry Higgins was consulted several times during the operation of the LA–ICP–MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley D. Stoner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoner, W.D., Millhauser, J.K., Rodríguez-Alegría, E. et al. Taken with a Grain of Salt: Experimentation and the Chemistry of Archaeological Ceramics from Xaltocan, Mexico. J Archaeol Method Theory 21, 862–898 (2014). https://doi.org/10.1007/s10816-013-9179-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-013-9179-2

Keywords

Navigation