Skip to main content

Advertisement

Log in

Differential expression of tsRNAs and miRNAs in embryo culture medium: potential impact on embryo implantation

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation?

Methods

We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells.

Results

Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids.

Conclusion

Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Additional data are available from the corresponding author on reasonable request.

References

  1. Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, Steel JH, Christian M, Chan YW, Boomsma CM, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cimadomo D, Capalbo A, Ubaldi FM, Scarica C, Palagiano A, Canipari R, Rienzi L. The impact of biopsy on human embryo developmental potential during preimplantation genetic diagnosis. Biomed Res Int. 2016;2016:7193075.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26:16–42.

    Article  CAS  PubMed  Google Scholar 

  4. Rubio C, Rodrigo L, Garcia-Pascual C, Peinado V, Campos-Galindo I, Garcia-Herrero S, Simon C. Clinical application of embryo aneuploidy testing by next-generation sequencing. Biol Reprod. 2019;101:1083–90.

    Article  PubMed  Google Scholar 

  5. Zhou W, Dimitriadis E. Secreted MicroRNA to predict embryo implantation outcome: from research to clinical diagnostic application. Front Cell Dev Biol. 2020;8:586510.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fang F, Li Z, Yu J, Long Y, Zhao Q, Ding X, Wu L, Shao S, Zhang L, Xiang W. MicroRNAs secreted by human embryos could be potential biomarkers for clinical outcomes of assisted reproductive technology. J Adv Res. 2021;31:25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abu-Halima M, Khaizaran ZA, Ayesh BM, Fischer U, Khaizaran SA, Al-Battah F, Hammadeh M, Keller A, Meese E. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil Steril. 2020;113(970–980):e972.

    Google Scholar 

  8. Berkhout RP, Keijser R, Repping S, Lambalk CB, Afink GB, Mastenbroek S, Hamer G. High-quality human preimplantation embryos stimulate endometrial stromal cell migration via secretion of microRNA hsa-miR-320a. Hum Reprod. 2020;35:1797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russell SJ, Menezes K, Balakier H, Librach C. Comprehensive profiling of small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Syst Biol Reprod Med. 2020;66:129–39.

    Article  CAS  PubMed  Google Scholar 

  10. Kirkegaard K, Yan Y, Sørensen BS, Hardarson T, Hanson C, Ingerslev HJ, Knudsen UB, Kjems J, Lundin K, Ahlström A. Comprehensive analysis of soluble RNAs in human embryo culture media and blastocoel fluid. J Assist Reprod Genet. 2020;37:2199–209.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang P, Tu B, Liao HJ, Huang FZ, Li ZZ, Zhu KY, Dai F, Liu HZ, Zhang TY, Sun CZ. Elevation of plasma tRNA fragments as a promising biomarker for liver fibrosis in nonalcoholic fatty liver disease. Sci Rep. 2021;11:5886.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tosar JP, Cayota A. Extracellular tRNAs and tRNA-derived fragments. RNA Biol. 2020;17:1149–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tosar JP, Segovia M, Castellano M, Gambaro F, Akiyama Y, Fagundez P, Olivera A, Costa B, Possi T, Hill M, et al. Fragmentation of extracellular ribosomes and tRNAs shapes the extracellular RNAome. Nucleic Acids Res. 2020;48:12874–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanov P, O’Day E, Emara MM, Wagner G, Lieberman J, Anderson P. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proc Natl Acad Sci U S A. 2014;111:18201–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez G. tRNA-derived small RNAs: new players in genome protection against retrotransposons. RNA Biol. 2018;15:170–5.

    Article  PubMed  Google Scholar 

  16. Buck VU, Kohlen MT, Sternberg AK, Rosing B, Neulen J, Leube RE, Classen-Linke I. Steroid hormones and human choriogonadotropin influence the distribution of alpha6-integrin and desmoplakin 1 in gland-like endometrial epithelial spheroids. Histochem Cell Biol. 2021;155:581–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeVeale B, Liu L, Boileau R, Swindlehurst-Chan J, Marsh B, Freimer JW, Abate A, Blelloch R. G1/S restriction point coordinates phasic gene expression and cell differentiation. Nat Commun. 2022;13:3696.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wade SL, Langer LF, Ward JM, Archer TK. MiRNA-mediated regulation of the SWI/SNF chromatin remodeling complex controls pluripotency and endodermal differentiation in human ESCs. Stem Cells. 2015;33:2925–35.

    Article  CAS  PubMed  Google Scholar 

  19. Dong X, Sui C, Huang K, Wang L, Hu D, Xiong T, Wang R, Zhang H. MicroRNA-223-3p suppresses leukemia inhibitory factor expression and pinopodes formation during embryo implantation in mice. Am J Transl Res. 2016;8(2):1155–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jing MY, Xie LD, Chen X, Zhou Y, Jin MM, He WH, Wang DM, Liu AX. Circ-CCNB1 modulates trophoblast proliferation and invasion in spontaneous abortion by regulating miR-223/SIAH1 axis. Endocrinology. 2022;163:8.

    Article  Google Scholar 

  21. Nechooshtan G, Yunusov D, Chang K, Gingeras TR. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment. Nucleic Acids Res. 2020;48:8035–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Liu X, Zhao D, Cui W, Wu Y, Zhang C, Duan C. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov. 2021;7:249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu M, Lu B, Zhang J, Ding J, Liu P, Lu Y. tRNA-derived RNA fragments in cancer: current status and future perspectives. J Hematol Oncol. 2020;13:121.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell. 2011;43:613–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim HK, Fuchs G, Wang S, Wei W, Zhang Y, Park H, Roy-Chaudhuri B, Li P, Xu J, Chu K, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature. 2017;552:57–62.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koera K, Nakamura K, Nakao K, Miyoshi J, Toyoshima K, Hatta T, Otani H, Aiba A, Katsuki M. K-ras is essential for the development of the mouse embryo. Oncogene. 1997;15(10):1151–9.

    Article  CAS  PubMed  Google Scholar 

  27. Liu J, Zhou Y, Tong L, Wang X, Li Y, Wang H. Developmental potential of different embryos on day 3: a retrospective study. J Obstet Gynaecol. 2022;42:3322–7.

    Article  PubMed  Google Scholar 

  28. Liu S, Cui H, Li Q, Zhang L, Na Q, Liu C. RhoGDI2 is expressed in human trophoblasts and involved in their migration by inhibiting the activation of RAC1. Biol Reprod. 2014;90:88.

    Article  PubMed  Google Scholar 

  29. Tu Z, Wang Q, Cui T, Wang J, Ran H, Bao H, Lu J, Wang B, Lydon JP, DeMayo F, et al. Uterine RAC1 via Pak1-ERM signaling directs normal luminal epithelial integrity conducive to on-time embryo implantation in mice. Cell Death Differ. 2016;23:169–81.

    Article  CAS  PubMed  Google Scholar 

  30. Du ZQ, Liang H, Liu XM, Liu YH, Wang C, Yang CX. Single cell RNA-seq reveals genes vital to in vitro fertilized embryos and parthenotes in pigs. Sci Rep. 2021;11:14393.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaneko Y, Lecce L, Day ML, Murphy CR. Focal adhesion kinase localizes to sites of cell-to-cell contact in vivo and increases apically in rat uterine luminal epithelium and the blastocyst at the time of implantation. J Morphol. 2012;273:639–50.

    Article  CAS  PubMed  Google Scholar 

  32. Harden SL, Zhou J, Gharanei S, Diniz-da-Costa M, Lucas ES, Cui L, Murakami K, Fang J, Chen Q, Brosens JJ, Lee YH. Exometabolomic analysis of decidualizing human endometrial stromal and perivascular cells. Front Cell Dev Biol. 2021;9:626619.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paule S, Nebl T, Webb AI, Vollenhoven B, Rombauts LJ, Nie G. Proprotein convertase 5/6 cleaves platelet-derived growth factor A in the human endometrium in preparation for embryo implantation. Mol Hum Reprod. 2015;21:262–70.

    Article  CAS  PubMed  Google Scholar 

  34. Purnell ET, Warner CM, Kort HI, Mitchell-Leef D, Elsner CW, Shapiro DB, Massey JB, Roudebush WE. Influence of the preimplantation embryo development (Ped) gene on embryonic platelet-activating factor (PAF) levels. J Assist Reprod Genet. 2006;23:269–73.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stepanjuk A, Koel M, Pook M, Saare M, Jaager K, Peters M, Krjutskov K, Ingerpuu S, Salumets A. MUC20 expression marks the receptive phase of the human endometrium. Reprod Biomed Online. 2019;39:725–36.

    Article  CAS  PubMed  Google Scholar 

  36. Moharrami T, Ai J, Ebrahimi-Barough S, Nouri M, Ziadi M, Pashaiefar H, Yazarlou F, Ahmadvand M, Najafi S, Modarressi MH. Influence of follicular fluid and seminal plasma on the expression of endometrial receptivity genes in endometrial cells. Cell J. 2021;22:457–66.

    PubMed  Google Scholar 

  37. Elnaggar A, Farag AH, Gaber ME, Hafeez MA, Ali MS, Atef AM. AlphaVBeta3 integrin expression within uterine endometrium in unexplained infertility: a prospective cohort study. BMC Womens Health. 2017;17:90.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang C, Gong W, Chen R, Ke H, Qu X, Yang W, Cheng Z. RhoA/ROCK/ARHGAP26 signaling in the eutopic and ectopic endometrium is involved in clinical characteristics of adenomyosis. J Int Med Res. 2018;46:5019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pfendler KC, Yoon J, Taborn GU, Kuehn MR, Iannaccone PM. Nodal and bone morphogenetic protein 5 interact in murine mesoderm formation and implantation. Genesis. 2000;28(1):1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Figdraw (www.figdraw.com) for expert assistance in the pattern drawing.

Funding

This work is supported by the Scientific Research Project of Hubei Provincial Health Commission (No. WJ2021M162), the Innovation and Cultivation Fund of Zhongnan Hospital (No. CXPY2022010), and the Basic and Clinical Medical Research Joint Fund of Zhongnan Hospital, Wuhan University (No. ZNLH202206).

Author information

Authors and Affiliations

Authors

Contributions

Designed the study and edited the final text: Yao Xiong, Ling Ma. Performed the experiments: Lei Shi, Zihan Wang, Zhidan Hong, Yanhong Mao. Wrote the manuscript and prepared the figures: Ling Ma, Ming Zhang. Contributed to manuscript revision and critical discussion: Ma Ling, Chun Zhou, Yao Xiong.

Corresponding author

Correspondence to Ling Ma.

Ethics declarations

Consent for publication

All authors consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yao Xiong and Lei Shi were the co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

10815_2024_3034_MOESM1_ESM.tif

Supplementary file1 RT-qPCR validation of miRNAs. qRT-PCR validation of miR-302 and miR-223 family members’ expression in high- and low-quality embryo culture medium compared to control medium. *P<0.05, **P<0.01. (TIF 5111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Shi, L., Zhang, M. et al. Differential expression of tsRNAs and miRNAs in embryo culture medium: potential impact on embryo implantation. J Assist Reprod Genet 41, 781–793 (2024). https://doi.org/10.1007/s10815-024-03034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03034-8

Keywords

Navigation