Skip to main content
Log in

Supplementing culture medium with the weak acid, 5,5-dimethyl-2,4-oxazolidinedione (DMO) limits the development of aneuploid mouse embryos through a Trp53-dependent mechanism

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to determine if DMO limits in vitro development of aneuploid-enriched mouse embryos by activating a Trp53-dependent mechanism.

Methods

Mouse cleavage-stage embryos were treated with reversine to induce aneuploidy or vehicle to generate controls, and then cultured in media supplemented with DMO to reduce the pH of the culture media. Embryo morphology was assessed by phase microscopy. Cell number, mitotic figures, and apoptotic bodies were revealed by staining fixed embryos with DAPI. mRNA levels of Trp53, Oct-4, and Cdx2 were monitored by quantitative polymerase chain reactions (qPCRs). The effect of Trp53 on the expression of Oct-4 and Cdx2 was assessed by depleting Trp53 using Trp53 siRNA.

Results

Aneuploid-enriched late-stage blastocysts were morphologically indistinguishable from control blastocysts but had fewer cells and reduced mRNA levels of Oct-4 and Cdx2. Adding 1 mM DMO to the culture media during the 8-cell to blastocyst transition reduced the formation of aneuploid-enriched late-stage blastocysts but not control blastocysts and further suppressed the levels of Oct-4 and Cdx2 mRNA. Trp53 RNA levels in aneuploid-enriched embryos that were exposed to DMO were > twofold higher than controls, and Trp53 siRNA levels reduced the levels of Trp53 and increased levels of Oct-4 and Cdx2 mRNA by > twofold.

Conclusion

These studies suggest that the development of morphologically normal aneuploid-enriched mouse blastocysts can be inhibited by adding low amounts of DMO to the culture media, which results in elevated levels of Trp53 mRNA that suppresses Oct-4 and Cdx2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All the data from this study is available in the supplemental tables. As such all the data is available to the public.

References

  1. McCoy RC. Mosaicism in preimplantation human embryos: when chromosomal abnormalities are the norm. Trends Genet. 2017;33:448–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harton GL, Cinnioglu C, Fiorentino F. Current experience concerning mosaic embryos diagnosed during preimplantation genetic screening. Fertil Steril. 2017;107:1113–9.

    Article  PubMed  Google Scholar 

  3. Kahraman S, Cetinkaya M, Yuksel B, Yesil M, Pirkevi CC. The birth of a baby with mosaicism resulting from a known mosaic embryo transfer: a case report. Hum Reprod. 2020;35:727–33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Treff NR, Marin D. The, “mosaic” embryo: misconceptions and misinterpretations in preimplantation genetic testing for aneuploidy. Fertil Steril. 2021;116:1205–11.

    Article  PubMed  Google Scholar 

  5. Bolton H, Graham SJ, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun. 2020;11:2958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165:1012–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang M, Rito T, Metzger J, Naftaly J, Soman R, Hu J, et al. Author correction: depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23:1212.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou F, Wang R, Yuan P, Ren Y, Mao Y, Li R, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature. 2019;572:660–4.

    Article  CAS  PubMed  Google Scholar 

  10. Mantikou E, Wong KM, Repping S, Mastenbroek S. Molecular origin of mitotic aneuploidies in preimplantation embryos. Biochim Biophys Acta. 2012;1822:1921–30.

    Article  CAS  PubMed  Google Scholar 

  11. Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier-Hayes L, et al. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene. 2017;36:2704–14.

    Article  CAS  PubMed  Google Scholar 

  12. Vitale I, Manic G, Castedo M, Kroemer G. Caspase 2 in mitotic catastrophe: the terminator of aneuploid and tetraploid cells. Mol Cell Oncol. 2017;4: e1299274.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev. 2012;79:311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gardner DK, Harvey AJ. Blastocyst metabolism. Reprod Fertil Dev. 2015;27:638–54.

    Article  CAS  PubMed  Google Scholar 

  15. Brison DR, Hewitson LC, Leese HJ. Glucose, pyruvate, and lactate concentrations in the blastocoel cavity of rat and mouse embryos. Mol Reprod Dev. 1993;35:227–32.

    Article  CAS  PubMed  Google Scholar 

  16. Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion? BioEssays. 2015;37:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50:434–42.

    Article  CAS  PubMed  Google Scholar 

  18. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod. 1998;13:3441–8.

    Article  CAS  PubMed  Google Scholar 

  19. Baltz JM. Intracellular pH regulation in the early embryo. BioEssays. 1993;15:523–30.

    Article  CAS  PubMed  Google Scholar 

  20. Barr KJ, Garrill A, Jones DH, Orlowski J, Kidder GM. Contributions of Na+/H+ exchanger isoforms to preimplantation development of the mouse. Mol Reprod Dev. 1998;50:146–53.

    Article  CAS  PubMed  Google Scholar 

  21. FitzHarris G, Baltz JM. Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction. 2009;138:619–27.

    Article  CAS  PubMed  Google Scholar 

  22. Gatimel N, Moreau J, Parinaud J, Leandri RD. Need for choosing the ideal pH value for IVF culture media. J Assist Reprod Genet. 2020;37:1019–28.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Phillips KP, Leveille MC, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15:896–904.

    Article  CAS  PubMed  Google Scholar 

  24. Siyanov V, Baltz JM. NHE1 is the sodium-hydrogen exchanger active in acute intracellular pH regulation in preimplantation mouse embryos. Biol Reprod. 2013;88:157.

    Article  PubMed  Google Scholar 

  25. Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol. 1996;271:C1512–20.

    Article  CAS  PubMed  Google Scholar 

  26. Jansen S, Esmaeilpour T, Pantaleon M, Kaye PL. Glucose affects monocarboxylate cotransporter (MCT) 1 expression during mouse preimplantation development. Reproduction. 2006;131:469–79.

    Article  CAS  PubMed  Google Scholar 

  27. Jansen S, Pantaleon M, Kaye PL. Characterization and regulation of monocarboxylate cotransporters Slc16a7 and Slc16a3 in preimplantation mouse embryos. Biol Reprod. 2008;79:84–92.

    Article  CAS  PubMed  Google Scholar 

  28. Zander-Fox DL, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online. 2010;21:219–29.

    Article  PubMed  Google Scholar 

  29. White MD, Bissiere S, Alvarez YD, Plachta N. Mouse embryo compaction. Curr Top Dev Biol. 2016;120:235–58.

    Article  CAS  PubMed  Google Scholar 

  30. Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod. 1997;56:1088–96.

    Article  CAS  PubMed  Google Scholar 

  31. Nagy A, Gertsenstein M, Vintersten K, Behringer R. Collecting zygotes and removing cumulus cells with hyaluronidase. CSH Protoc 2006;2006.

  32. Comisso E, Scarola M, Rosso M, Piazza S, Marzinotto S, Ciani Y, et al. OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness. Oncogene. 2017;36:4253–66.

    Article  CAS  PubMed  Google Scholar 

  33. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.

    Article  CAS  PubMed  Google Scholar 

  34. Daigneault BW, Rajput S, Smith GW, Ross PJ. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Sci Rep. 2018;8:7753.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jedrusik A, Cox A, Wicher KB, Glover DM, Zernicka-Goetz M. Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition. Dev Biol. 2015;398:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. 1996;44:476–85.

    Article  CAS  PubMed  Google Scholar 

  37. Tan TCY, Mahbub SB, Campbell JM, Habibalahi A, Campugan CA, Rose RD, et al. Non-invasive, label-free optical analysis to detect aneuploidy within the inner cell mass of the preimplantation embryo. Hum Reprod. 2021;37:14–29.

    Article  PubMed  Google Scholar 

  38. Li A, Chandrakanthan V, Chami O, O’Neill C. Culture of zygotes increases TRP53 [corrected] expression in B6 mouse embryos, which reduces embryo viability. Biol Reprod. 2007;76:362–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wells D, Bermudez MG, Steuerwald N, Malter HE, Thornhill AR, Cohen J. Association of abnormal morphology and altered gene expression in human preimplantation embryos. Fertil Steril. 2005;84:343–55.

    Article  CAS  PubMed  Google Scholar 

  40. Wells D, Bermudez MG, Steuerwald N, Thornhill AR, Walker DL, Malter H, et al. Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Hum Reprod. 2005;20:1339–48.

    Article  CAS  PubMed  Google Scholar 

  41. Regin M, Spits C, Sermon K. On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Mol Hum Reprod. 2022;28(4):1–13.

  42. Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, et al. p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol. 2012;10: e1001268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Y, White KA, Barber DL. Intracellular pH regulates cancer and stem cell behaviors: a protein dynamics perspective. Front Oncol. 2020;10:1401.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Peluso.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Figure 1.

The effect of reversine (5 μM) on the induction of aneuploidy as revealed by FISH analysis. The upper panel shows a typical diploid blastomere with two red dots and two green dots that represent chromosome 11q and 2q, respectively as well as examples of various aneuploid blastomeres. The table in the lower panel presents the ploidy status of all the blastomeres that were analyzed after DMSO (control) and reversine treatment as revealed by the number of 11q and 2q chromosomes present. Ploidy status for each blastomeres is indicated by a D (diploid) or A (aneuploid). (PNG 2491 kb)

High resolution image (TIFF 3574 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lowther, K.M., Bartolucci, A.F., Massey, R.E. et al. Supplementing culture medium with the weak acid, 5,5-dimethyl-2,4-oxazolidinedione (DMO) limits the development of aneuploid mouse embryos through a Trp53-dependent mechanism. J Assist Reprod Genet 40, 1215–1223 (2023). https://doi.org/10.1007/s10815-023-02788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02788-x

Keywords

Navigation