Skip to main content

Advertisement

Log in

Basal serum level of Δ4-androstenedione reflects the ovaries’ ability to respond to stimulation in IVF cycles: setting up a new reliable index of both ovarian reserve and response

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Adequate androgen levels are necessary for regular follicular growth, progression beyond the pre-antral stage, and prevention of follicular atresia. The main purpose of this study was to investigate whether baseline androgen levels had a predictive value on stimulation outcomes in IVF cycles. The secondary purpose was to compare the possible predictive value of androgens with that of already known markers.

Methods

The study included 91 infertile patients aged 30–45 years awaiting the first IVF cycle. All women underwent the same stimulation protocol and the same starting dose of recombinant FSH. As stimulation outcomes, the number of follicles recruited, estradiol and progesterone levels on the day of trigger, the total dose of gonadotropins administered, and the number of oocytes collected were recorded. Multiple linear regression and multivariate logistic regression were used to evaluate the significant predictive value of the variables for response to controlled ovarian stimulation (COS). By studying the reliability of different markers, an attempt was made to develop a single index with the highest predictive value.

Results

Pearson’s correlation revealed a statistically significant inverse correlation between oocytes collected and age (r =  − 0.333, p < 0.001) and a positive correlation with AMH (anti-müllerian hormone) (r = 0.360, p < 0.001), antral follicle count (AFC) (r = 0.639, p < 0.001), and androstenedione (Δ4-A) (r = 0.359, p < 0.001). No significant correlation was reported with FSH (r =  − 0.133, p = 0.207) and total testosterone (r = 0.180, p = 0.088). In COS good responders, the G-index (= AMH ng/mL*AFC/Δ4-A ng/dL) revealed a significantly higher level (p < 0.001) than AMH, AFC, and Δ4-A alone.

Conclusion

Baseline serum Δ4-A, presumably crucial for ensuring a regular follicular growth, is a reliable marker of ovarian response to stimulation. Since the ovarian capacity to respond to gonadotropins does not depend exclusively on the presence of follicles, we suggest a new index, the G-index, able to contemplate both the ovarian reserve and the Δ4-A level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sunkara SK, et al. Association between the number of eggs and live birth in IVF treatment: an analysis of 400 135 treatment cycles. Hum Reprod. 2011;26(7):1768–74.

    Article  PubMed  Google Scholar 

  2. Verberg MF, et al. Why do couples drop-out from IVF treatment? A prospective cohort study. Hum Reprod. 2008;23(9):2050–5.

    Article  CAS  PubMed  Google Scholar 

  3. Baker VL, et al. Association of number of retrieved oocytes with live birth rate and birth weight: an analysis of 231,815 cycles of in vitro fertilization. Fertil Steril. 2015;103(4):931-938.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fauser BC, Diedrich K, Devroey P. Predictors of ovarian response: progress towards individualized treatment in ovulation induction and ovarian stimulation. Hum Reprod Update. 2008;14(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  5. de Boer EJ, et al. A low number of retrieved oocytes at in vitro fertilization treatment is predictive of early menopause. Fertil Steril. 2002;77(5):978–85.

    Article  PubMed  Google Scholar 

  6. te Velde ER, Pearson PL. The variability of female reproductive ageing. Hum Reprod Update. 2002;8(2):141–54.

    Article  Google Scholar 

  7. Klinkert ER, et al. A poor response in the first in vitro fertilization cycle is not necessarily related to a poor prognosis in subsequent cycles. Fertil Steril. 2004;81(5):1247–53.

    Article  PubMed  Google Scholar 

  8. Broer SL, et al. Prediction of an excessive response in in vitro fertilization from patient characteristics and ovarian reserve tests and comparison in subgroups: an individual patient data meta-analysis. Fertil Steril. 2013;100(2):420-9.e7.

    Article  PubMed  Google Scholar 

  9. Broekmans FJ, et al. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.

    Article  CAS  PubMed  Google Scholar 

  10. La Marca A, et al. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update. 2010;16(2):113–30.

    Article  PubMed  CAS  Google Scholar 

  11. Verhagen TE, et al. The accuracy of multivariate models predicting ovarian reserve and pregnancy after in vitro fertilization: a meta-analysis. Hum Reprod Update. 2008;14(2):95–100.

    Article  CAS  PubMed  Google Scholar 

  12. Ferraretti AP, et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod. 2011;26(7):1616–24.

    Article  CAS  PubMed  Google Scholar 

  13. Kwee J, et al. Comparison of endocrine tests with respect to their predictive value on the outcome of ovarian hyperstimulation in IVF treatment: results of a prospective randomized study. Hum Reprod. 2003;18(7):1422–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol Reprod. 2006;75(6):924–32.

    Article  CAS  PubMed  Google Scholar 

  15. Walters KA, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biol Reprod. 2008;78(3):380–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol Endocrinol. 2010;24(7):1393–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nielsen ME, et al. In human granulosa cells from small antral follicles, androgen receptor mRNA and androgen levels in follicular fluid correlate with FSH receptor mRNA. Mol Hum Reprod. 2011;17(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  18. Burger HG. Androgen production in women. Fertil Steril. 2002;77(Suppl 4):S3-5.

    Article  PubMed  Google Scholar 

  19. Meldrum DR, et al. Role of decreased androgens in the ovarian response to stimulation in older women. Fertil Steril. 2013;99(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  20. van der Stege JG, et al. Decreased androgen concentrations and diminished general and sexual well-being in women with premature ovarian failure. Menopause. 2008;15(1):23–31.

    Article  PubMed  Google Scholar 

  21. Gleicher N, et al. Hypoandrogenism in association with diminished functional ovarian reserve. Hum Reprod. 2013;28(4):1084–91.

    Article  CAS  PubMed  Google Scholar 

  22. Norman RJ. Hyperandrogenaemia and the ovary. Mol Cell Endocrinol. 2002;191(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  23. Pigny P, et al. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab. 2003;88(12):5957–62.

    Article  CAS  PubMed  Google Scholar 

  24. Sen A, et al. Endocrine autoimmune diseases and female infertility. Nat Rev Endocrinol. 2014;10(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  25. Frattarelli JL, Peterson EH. Effect of androgen levels on in vitro fertilization cycles. Fertil Steril. 2004;81(6):1713–4.

    Article  PubMed  Google Scholar 

  26. Frattarelli JL, Gerber MD. Basal and cycle androgen levels correlate with in vitro fertilization stimulation parameters but do not predict pregnancy outcome. Fertil Steril. 2006;86(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  27. Qin Y, et al. Association of basal serum testosterone levels with ovarian response and in vitro fertilization outcome. Reprod Biol Endocrinol. 2011;9:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun B, et al. Basal serum testosterone levels correlate with ovarian response but do not predict pregnancy outcome in non-PCOS women undergoing IVF. J Assist Reprod Genet. 2014;31(7):829–35.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sullivan GM, Feinn R. Using effect size—or why the P value is not enough. J Grad Med Educ. 2012;4(3):279–82.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Broekmans FJ, et al. The antral follicle count: practical recommendations for better standardization. Fertil Steril. 2010;94(3):1044–51.

    Article  PubMed  Google Scholar 

  31. Abbara A, et al. Follicle size on day of trigger most likely to yield a mature oocyte. Front Endocrinol (Lausanne). 2018;9:193.

  32. Ji J, et al. The optimum number of oocytes in IVF treatment: an analysis of 2455 cycles in China. Hum Reprod. 2013;28(10):2728–34.

    Article  PubMed  Google Scholar 

  33. Ozyurek ES, Yoldemir T, Artar G. Androstenedione response to recombinant human FSH is the most valid predictor of the number of selected follicles in polycystic ovarian syndrome: (a case-control study). J Ovarian Res. 2017;10(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Menet MC, et al. rFSH in medically assisted procreation: evidence for ovarian follicular hyperplasia and interest of mass spectrometry to measure 17-hydroxyprogesterone and Δ4-androstenedione in serum. Mol Cell Endocrinol. 2017;450:105–12.

    Article  CAS  PubMed  Google Scholar 

  35. Walters KA, Handelsman DJ. Role of androgens in the ovary. Mol Cell Endocrinol. 2018;465:36–47.

    Article  CAS  PubMed  Google Scholar 

  36. Murray AA, et al. Effect of androgens on the development of mouse follicles growing in vitro. J Reprod Fertil. 1998;113(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, et al. Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology. 2001;142(11):4930–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gleicher N, et al. The importance of adrenal hypoandrogenism in infertile women with low functional ovarian reserve: a case study of associated adrenal insufficiency. Reprod Biol Endocrinol. 2016;14:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Casson PR, et al. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum Reprod. 2000;15(10):2129–32.

    Article  CAS  PubMed  Google Scholar 

  40. Barad D, Gleicher N. Effect of dehydroepiandrosterone on oocyte and embryo yields, embryo grade and cell number in IVF. Hum Reprod. 2006;21(11):2845–9.

    Article  CAS  PubMed  Google Scholar 

  41. Gleicher N, Barad DH. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reprod Biol Endocrinol. 2011;9(1):67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mamas L, Mamas E. Premature ovarian failure and dehydroepiandrosterone. Fertil Steril. 2009;91(2):644–6.

    Article  CAS  PubMed  Google Scholar 

  43. Sunkara SK, Coomarasamy A. Androgen pretreatment in poor responders undergoing controlled ovarian stimulation and in vitro fertilization treatment. Fertil Steril. 2011;95(8):e73-4 (author reply e75).

    Article  CAS  PubMed  Google Scholar 

  44. Barad D, Brill H, Gleicher N. Update on the use of dehydroepiandrosterone supplementation among women with diminished ovarian function. J Assist Reprod Genet. 2007;24(12):629–34.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yeung TW, et al. A randomized double-blinded placebo-controlled trial on the effect of dehydroepiandrosterone for 16 weeks on ovarian response markers in women with primary ovarian insufficiency. J Clin Endocrinol Metab. 2013;98(1):380–8.

    Article  CAS  PubMed  Google Scholar 

  46. Narkwichean A, et al. Efficacy of dehydroepiandrosterone (DHEA) to overcome the effect of ovarian ageing (DITTO): a proof of principle double blinded randomized placebo controlled trial. Eur J Obstet Gynecol Reprod Biol. 2017;218:39–48.

    Article  CAS  PubMed  Google Scholar 

  47. Ferrario M, et al. Ovarian and adrenal androgens may be useful markers to predict oocyte competence and embryo development in older women. Gynecol Endocrinol. 2015;31(2):125–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.G. conceived the presented idea and managed the project. V.G., G.M., G.Ma, E.Gu, and J.R. contributed to acquisition of data. A.M.M. and P.S. helped supervise the project. L.G. helped analyze the data. V.G., L.G., and E.G. drafted and finalized the manuscript. All authors agreed with the submission of the manuscript and gave approval to the final version to be published.

Corresponding author

Correspondence to Emanuele Garzia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garzia, E., Galiano, V., Guarnaccia, L. et al. Basal serum level of Δ4-androstenedione reflects the ovaries’ ability to respond to stimulation in IVF cycles: setting up a new reliable index of both ovarian reserve and response. J Assist Reprod Genet 39, 1917–1926 (2022). https://doi.org/10.1007/s10815-022-02546-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02546-5

Keywords

Navigation