Skip to main content

Advertisement

Log in

Low first-trimester PAPP-A in IVF (fresh and frozen-thawed) pregnancies, likely due to a biological cause

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to confirm a difference in the first-trimester screen maternal biochemistry and false-positive rates (FPR) between pregnancies conceived spontaneously and those conceived via assisted reproductive technologies (ART).

Methods

Retrospective analysis of the complete population of women (17,889 pregnancies) who had undergone first-trimester screening between January 2004 and September 2009 at three private ultrasound clinics in Queensland, Australia was used in the study. The age, gestation, method of conception, ultrasound markers, biochemistry markers (PAPP-A, fβ-hCG), and type of biochemical analyzer platform (Brahms Kryptor, Immulite 2000) data was collated. Univariate analysis of variance (ANOVA), Spearman’s rank nonparametric correlation analysis, and Binary Logistic Regression analysis were used to analyze data. Spontaneous pregnancies were used as controls. Results were considered significant when the p value was less than 0.05.

Results

After exclusions, 16,363 singleton pregnancies, including 1543 conceived via ART, were analyzed. Results from the two biochemistry platforms, Brahms Kryptor and Immulite 2000 were significantly different (p < 0.001); thus, the data was divided for analysis purposes. PAPP-A was universally significantly lower in IVF pregnancies compared to spontaneously conceived pregnancies (p < 0.001). Using the Brahms Kryptor platform, ICSI was associated with significantly decreased PAPP-A (p < 0.046), and a significantly increased FPR (p = 0.012).

Conclusions

Consistent with previous studies IVF pregnancies had significantly lower PAPP-A levels supporting the need to appropriately adjust the combined first-trimester screening (cFTS) risk algorithm for IVF conceptions. The Brahms Kryptor and Immulite 2000 platforms are significantly different; however, the universally lower PAPP-A findings support the hypothesis that the lower PAPP-A is due to a biological cause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nicolaides KH. Screening for chromosomal defects. Ultrasound Obstet Gynecol. 2003;21(4):313–21. doi:10.1002/uog.128.

    Article  CAS  PubMed  Google Scholar 

  2. Royal Australian and New Zealand College of Obstetricians and Gynaecologists and Human Genetics Society of Australasia. Prenatal screening tests for trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome) and neural tube defects. Victoria: Royal Australian and New Zealand College of Obstetricians and Gynaecologists; 2007.

  3. Klemetti R, Gissler M, Hemminki E. Comparison of perinatal health of children born from IVF in Finland in the early and late 1990s. Hum Reprod. 2002;17(8):2192–8.

    Article  PubMed  Google Scholar 

  4. Wright VC, Chang J, Jeng G, Macaluso M. Centers for disease C, prevention. Assisted reproductive technology surveillance—United States, 2005. MMWR Surveill Summ. 2008;57(5):1–23.

    PubMed  Google Scholar 

  5. Wang YA, Macaldowie A, Hayward I, Chambers GM, Sullivan EA. Assisted reproductive technology in Australia and New Zealand 2009. Australian Institute of Health and Welfare: Canberra; 2011.

    Google Scholar 

  6. Li Z, Zeki R, Hilder L, Sullivan E. Australia’s mothers and babies 2011. Australian Institute of Health and Welfare: Canberra; 2013.

    Google Scholar 

  7. Bellver J, Casanova C, Garrido N, Lara C, Remohi J, Pellicer A, et al. Additive effect of factors related to assisted conception on the reduction of maternal serum pregnancy-associated plasma protein A concentrations and the increased false-positive rates in first-trimester Down syndrome screening. Fertil Steril. 2013;100(5):1314–20. doi:10.1016/j.fertnstert.2013.06.045.

    Article  CAS  PubMed  Google Scholar 

  8. Spencer K. First trimester maternal serum screening for Down's syndrome: an evaluation of the DPC Immulite 2000 free beta-hCG and pregnancy-associated plasma protein-A assays. Ann Clin Biochem. 2005;42(Pt 1):30–40. doi:10.1258/0004563053026880.

    Article  CAS  PubMed  Google Scholar 

  9. Liao AW, Heath V, Kametas N, Spencer K, Nicolaides KH. First-trimester screening for trisomy 21 in singleton pregnancies achieved by assisted reproduction. Hum Reprod. 2001;16(7):1501–4.

    Article  CAS  PubMed  Google Scholar 

  10. Orlandi F, Rossi C, Allegra A, Krantz D, Hallahan T, Orlandi E, et al. First trimester screening with free beta-hCG, PAPP-A and nuchal translucency in pregnancies conceived with assisted reproduction. Prenat Diagn. 2002;22(8):718–21. doi:10.1002/pd.390.

    Article  CAS  PubMed  Google Scholar 

  11. Maymon R, Shulman A. Serial first- and second-trimester Down’s syndrome screening tests among IVF-versus naturally-conceived singletons. Hum Reprod. 2002;17(4):1081–5.

    Article  CAS  PubMed  Google Scholar 

  12. Maymon R, Shulman A. Integrated first- and second-trimester Down syndrome screening test among unaffected IVF pregnancies. Prenat Diagn. 2004;24(2):125–9. doi:10.1002/pd.809.

    Article  PubMed  Google Scholar 

  13. Bersinger NA, Wunder D, Vanderlick F, Chanson A, Pescia G, Janecek P, et al. Maternal serum levels of placental proteins after in vitro fertilisation and their implications for prenatal screening. Prenat Diagn. 2004;24(6):471–7. doi:10.1002/pd.910.

    Article  CAS  PubMed  Google Scholar 

  14. Hui PW, Tang MH, Lam YH, Yeung WS, Ng EH, Ho PC. Nuchal translucency in pregnancies conceived after assisted reproduction technology. Ultrasound Obstet Gynecol. 2005b;25(3):234–8. doi:10.1002/uog.1846.

    Article  CAS  PubMed  Google Scholar 

  15. Tul N, Novak-Antolic Z. Serum PAPP-A levels at 10-14 weeks of gestation are altered in women after assisted conception. Prenat Diagn. 2006;26(13):1206–11. doi:10.1002/pd.1589.

    Article  CAS  PubMed  Google Scholar 

  16. Anckaert E, Schiettecatte J, Sleurs E, Devroey P, Smitz J. First trimester screening for Down’s syndrome after assisted reproductive technology: non-male factor infertility is associated with elevated free beta-human chorionic gonadotropin levels at 10-14 weeks of gestation. Fertil Steril. 2008;90(4):1206–10. doi:10.1016/j.fertnstert.2007.08.050.

    Article  CAS  PubMed  Google Scholar 

  17. Kagan KO, Wright D, Spencer K, Molina FS, Nicolaides KH. First-trimester screening for trisomy 21 by free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A: impact of maternal and pregnancy characteristics. Ultrasound Obstet Gynecol. 2008;31(5):493–502. doi:10.1002/uog.5332.

    Article  CAS  PubMed  Google Scholar 

  18. Gjerris AC, Loft A, Pinborg A, Christiansen M, Tabor A. First-trimester screening markers are altered in pregnancies conceived after IVF/ICSI. Ultrasound Obstet Gynecol. 2009;33(1):8–17. doi:10.1002/uog.6254.

    Article  CAS  PubMed  Google Scholar 

  19. Amor DJ, Xu JX, Halliday JL, Francis I, Healy DL, Breheny S, et al. Pregnancies conceived using assisted reproductive technologies (ART) have low levels of pregnancy-associated plasma protein-A (PAPP-A) leading to a high rate of false-positive results in first trimester screening for Down syndrome. Hum Reprod. 2009;24(6):1330–8. doi:10.1093/humrep/dep046.

    Article  CAS  PubMed  Google Scholar 

  20. Bender F, Hecken J, Reinsberg J, Berg C, van der Ven H, Gembruch U, et al. Altered first-trimester screening markers after IVF/ICSI: no relationship with small-for-gestational-age and number of embryos transferred. Reprod BioMed Online. 2010;20(4):516–22. doi:10.1016/j.rbmo.2009.12.025.

    Article  CAS  PubMed  Google Scholar 

  21. Engels MA, Kooij M, Schats R, Twisk JW, Blankenstein MA, van Vugt JM. First-trimester serum marker distribution in singleton pregnancies conceived with assisted reproduction. Prenat Diagn. 2010;30(4):372–7. doi:10.1002/pd.2495.

    CAS  PubMed  Google Scholar 

  22. Matilainen M, Peuhkurinen S, Laitinen P, Jarvela I, Morin-Papunen L, Ryynanen M. In combined first-trimester Down syndrome screening, the false-positive rate is not higher in pregnancies conceived after assisted reproduction compared with spontaneous pregnancies. Fertil Steril. 2011;95(1):378–81. doi:10.1016/j.fertnstert.2010.07.1048.

    Article  PubMed  Google Scholar 

  23. Giorgetti C, Vanden Meerschaut F, De Roo C, Saunier O, Quarello E, Hairion D, et al. Multivariate analysis identifies the estradiol level at ovulation triggering as an independent predictor of the first trimester pregnancy-associated plasma protein-A level in IVF/ICSI pregnancies. Hum Reprod. 2013;28(10):2636–42. doi:10.1093/humrep/det295.

    Article  CAS  PubMed  Google Scholar 

  24. Bonne S, Sauleau E, Sananes N, Akaladios C, Rongieres C, Pirrello O. Influence of medically assisted reproduction techniques on crown-rump length and biochemical markers of trisomy 21 in the first trimester of pregnancy. Fertil Steril. 2016;105(2):410–6. doi:10.1016/j.fertnstert.2015.10.031.

    Article  CAS  PubMed  Google Scholar 

  25. Wojdemann KR, Larsen SO, Shalmi A, Sundberg K, Christiansen M, Tabor A. First trimester screening for Down syndrome and assisted reproduction: no basis for concern. Prenat Diagn. 2001;21(7):563–5. doi:10.1002/pd.124.

    Article  CAS  PubMed  Google Scholar 

  26. Ghisoni L, Ferrazzi E, Castagna C, Levi Setti PE, Masini AC, Pigni A. Prenatal diagnosis after ART success: the role of early combined screening tests in counselling pregnant patients. Placenta. 2003;24(Suppl B):S99–S103.

    Article  PubMed  Google Scholar 

  27. Bellver J, Lara C, Soares SR, Ramirez A, Pellicer A, Remohi J, et al. First trimester biochemical screening for Down’s syndrome in singleton pregnancies conceived by assisted reproduction. Hum Reprod. 2005;20(9):2623–7. doi:10.1093/humrep/dei107.

    Article  CAS  PubMed  Google Scholar 

  28. Lambert-Messerlian G, Dugoff L, Vidaver J, Canick JA, Malone FD, Ball RH, et al. First- and second-trimester Down syndrome screening markers in pregnancies achieved through assisted reproductive technologies (ART): a FASTER trial study. Prenat Diagn. 2006;26(8):672–8. doi:10.1002/pd.1469.

    Article  CAS  PubMed  Google Scholar 

  29. Niemimaa M, Heinonen S, Seppala M, Hippelainen M, Martikainen H, Ryynanen M. First-trimester screening for Down’s syndrome in in vitro fertilization pregnancies. Fertil Steril. 2001;76(6):1282–3.

    Article  CAS  PubMed  Google Scholar 

  30. Hui PW, Lam YH, Tang MH, Ng EH, Yeung WS, Ho PC. Maternal serum pregnancy-associated plasma protein-A and free beta-human chorionic gonadotrophin in pregnancies conceived with fresh and frozen-thawed embryos from in vitro fertilization and intracytoplasmic sperm injection. Prenat Diagn. 2005a;25(5):390–3. doi:10.1002/pd.1169.

    Article  CAS  PubMed  Google Scholar 

  31. Ong CY, Liao AW, Spencer K, Munim S, Nicolaides KH. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG. 2000;107(10):1265–70.

    Article  CAS  PubMed  Google Scholar 

  32. Smith GC, Stenhouse EJ, Crossley JA, Aitken DA, Cameron AD, Connor JM. Early pregnancy levels of pregnancy-associated plasma protein a and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. J Clin Endocrinol Metab. 2002;87(4):1762–7. doi:10.1210/jcem.87.4.8430.

    Article  CAS  PubMed  Google Scholar 

  33. Santolaya-Forgas J, De Leon JA, Cullen Hopkins R, Castracane VD, Kauffman RP, Sifuentes GA. Low pregnancy-associated plasma protein-a at 10(+1) to 14(+6) weeks of gestation and a possible mechanism leading to miscarriage. Fetal Diagn Ther. 2004;19(5):456–61. doi:10.1159/000079000.

    Article  CAS  PubMed  Google Scholar 

  34. Dugoff L, Hobbins JC, Malone FD, Vidaver J, Sullivan L, Canick JA, et al. Quad screen as a predictor of adverse pregnancy outcome. Obstet Gynecol. 2005;106(2):260–7. doi:10.1097/01.AOG.0000172419.37410.eb.

    Article  PubMed  Google Scholar 

  35. Spencer K, Cowans NJ, Molina F, Kagan KO, Nicolaides KH. First-trimester ultrasound and biochemical markers of aneuploidy and the prediction of preterm or early preterm delivery. Ultrasound Obstet Gynecol. 2008;31(2):147–52. doi:10.1002/uog.5163.

    Article  CAS  PubMed  Google Scholar 

  36. Smith GC, Shah I, Crossley JA, Aitken DA, Pell JP, Nelson SM, et al. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet Gynecol. 2006;107(1):161–6. doi:10.1097/01.AOG.0000191302.79560.d8.

    Article  CAS  PubMed  Google Scholar 

  37. Papageorghiou AT, Leslie K. Uterine artery doppler in the prediction of adverse pregnancy outcome. Curr Opin Obstet Gynecol. 2007;19(2):103–9. doi:10.1097/GCO.0b013e32809bd964.

    Article  PubMed  Google Scholar 

  38. Gagnon A, Wilson RD, Audibert F, Allen VM, Blight C, Brock JA, et al. Obstetrical complications associated with abnormal maternal serum markers analytes. J Obstet Gynaecol Can. 2008;30(10):918–49.

    Article  PubMed  Google Scholar 

  39. Pihl K, Larsen T, Krebs L, Christiansen M. First trimester maternal serum PAPP-A, beta-hCG and ADAM12 in prediction of small-for-gestational-age fetuses. Prenat Diagn. 2008;28(12):1131–5. doi:10.1002/pd.2141.

    Article  PubMed  Google Scholar 

  40. Goetzinger KR, Cahill AG, Macones GA, Odibo AO. Association of first-trimester low PAPP-A levels with preterm birth. Prenat Diagn. 2010;30(4):309–13. doi:10.1002/pd.2452.

    CAS  PubMed  Google Scholar 

  41. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328(7434):261. doi:10.1136/bmj.37957.560278.EE.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shevell T, Malone FD, Vidaver J, Porter TF, Luthy DA, Comstock CH, et al. Assisted reproductive technology and pregnancy outcome. Obstet Gynecol. 2005;106(5 Pt 1):1039–45. doi:10.1097/01.AOG.0000183593.24583.7c.

    Article  PubMed  Google Scholar 

  43. Williams C, Sutcliffe A. Infant outcomes of assisted reproduction. Early Hum Dev. 2009;85(11):673–7. doi:10.1016/j.earlhumdev.2009.08.055.

    Article  PubMed  Google Scholar 

  44. Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, Andersen AN. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011;95(3):959–63. doi:10.1016/j.fertnstert.2010.07.1075.

    Article  PubMed  Google Scholar 

  45. Yli-Kuha AN, Gissler M, Luoto R, Hemminki E. Success of infertility treatments in Finland in the period 1992-2005. Eur J Obstet Gynecol Reprod Biol. 2009;144(1):54–8. doi:10.1016/j.ejogrb.2008.12.017.

    Article  PubMed  Google Scholar 

  46. Chen JZ, Wong MH, Brennecke SP, Keogh RJ. The effects of human chorionic gonadotrophin, progesterone and oestradiol on trophoblast function. Mol Cell Endocrinol. 2011;342(1–2):73–80. doi:10.1016/j.mce.2011.05.034.

    Article  CAS  PubMed  Google Scholar 

  47. Ranta JK, Raatikainen K, Romppanen J, Pulkki K, Heinonen S. Increased time-to-pregnancy and first trimester Down's syndrome screening. Hum Reprod. 2010;25(2):412–7. doi:10.1093/humrep/dep417.

    Article  PubMed  Google Scholar 

  48. Cowans NJ, Spencer K. Effect of gestational age on first trimester maternal serum prenatal screening correction factors for ethnicity and IVF conception. Prenat Diagn. 2013;33(1):56–60. doi:10.1002/pd.4010.

    Article  CAS  PubMed  Google Scholar 

  49. Gjerris AC, Tabor A, Loft A, Christiansen M, Pinborg A. First trimester prenatal screening among women pregnant after IVF/ICSI. Hum Reprod Update. 2012;18(4):350–9. doi:10.1093/humupd/dms010.

    Article  PubMed  Google Scholar 

  50. Engels MA, Pajkrt E, Groot DT, Schats R, Twisk JW, van Vugt JM. Validation of correction factors for serum markers for first-trimester Down syndrome screening in singleton pregnancies conceived with assisted reproduction. Fetal Diagn Ther. 2013;34(4):217–24. doi:10.1159/000355527.

    Article  PubMed  Google Scholar 

  51. Nelissen EC, Van Montfoort AP, Smits LJ, Menheere PP, Evers JL, Coonen E, et al. IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy. Hum Reprod. 2013;28(8):2067–74. doi:10.1093/humrep/det131.

    Article  CAS  PubMed  Google Scholar 

  52. Farin PW, Piedrahita JA, Farin CE. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology. 2006;65(1):178–91. doi:10.1016/j.theriogenology.2005.09.022.

    Article  PubMed  Google Scholar 

  53. Delle Piane L, Lin W, Liu X, Donjacour A, Minasi P, Revelli A, et al. Effect of the method of conception and embryo transfer procedure on mid-gestation placenta and fetal development in an IVF mouse model. Hum Reprod. 2010;25(8):2039–46. doi:10.1093/humrep/deq165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hunt L, Peterson M, Sinnott S, Sutton B, Cincotta R, Duncombe G, et al. Uptake of invasive prenatal tests in pregnancies conceived via assisted reproductive technologies: the experience in Queensland, Australia. Prenat Diagn. 2012;32(11):1049–52. doi:10.1002/pd.3953.

    Article  PubMed  Google Scholar 

  55. Chiu RW, Akolekar R, Zheng YW, Leung TY, Sun H, Chan KC, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011;342:c7401. doi:10.1136/bmj.c7401.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Darwiche J, Lawrence C, Vial Y, Wunder D, Stiefel F, Germond M, et al. Anxiety and psychological stress before prenatal screening in first-time mothers who conceived through IVF/ICSI or spontaneously. Women Health. 2014;54(5):474–85. doi:10.1080/03630242.2014.897677.

    Article  PubMed  Google Scholar 

  57. Cheung CS, Chan CH, Ng EH. Stress and anxiety-depression levels following first-trimester miscarriage: a comparison between women who conceived naturally and women who conceived with assisted reproduction. BJOG. 2013;120(9):1090–7. doi:10.1111/1471-0528.12251.

    Article  CAS  PubMed  Google Scholar 

  58. The Fetal Medicine Foundation. Guidelines for the use of first trimester screening 2012 algorithm. London: The Fetal Medicine Foundation; 2012.

    Google Scholar 

  59. Gjerris AC, Loft A, Pinborg A, Tabor A, Christiansen M. First-trimester screening in pregnancies conceived by assisted reproductive technology: significance of gestational dating by oocyte retrieval or sonographic measurement of crown-rump length. Ultrasound Obstet Gynecol. 2008;32(5):612–7. doi:10.1002/uog.6128.

    Article  CAS  PubMed  Google Scholar 

  60. Wennerholm UB, Bergh C, Hagberg H, Sultan B, Wennergren M. Gestational age in pregnancies after in vitro fertilization: comparison between ultrasound measurement and actual age. Ultrasound Obstet Gynecol. 1998;12(3):170–4. doi:10.1046/j.1469-0705.1998.12030170.x.

    Article  CAS  PubMed  Google Scholar 

  61. Tunon K, Eik-Nes SH, Grottum P, Von During V, Kahn JA. Gestational age in pregnancies conceived after in vitro fertilization: a comparison between age assessed from oocyte retrieval, crown-rump length and biparietal diameter. Ultrasound Obstet Gynecol. 2000;15(1):41–6. doi:10.1046/j.1469-0705.2000.00004.x.

    Article  CAS  PubMed  Google Scholar 

  62. Vulliemoz NR, McVeigh E, Kurinczuk J. In vitro fertilisation: perinatal risks and early childhood outcomes. Hum Fertil (Camb). 2012;15(2):62–8. doi:10.3109/14647273.2012.663571.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Paula Sivyer from Diagnostic Imagining for Women, Brisbane, Australia for donating data to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren P. Hunt.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Funding received

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, L.P., McInerney-Leo, A.M., Sinnott, S. et al. Low first-trimester PAPP-A in IVF (fresh and frozen-thawed) pregnancies, likely due to a biological cause. J Assist Reprod Genet 34, 1367–1375 (2017). https://doi.org/10.1007/s10815-017-0996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0996-1

Keywords

Navigation