Skip to main content
Log in

Association of a TDRD1 variant with spermatogenic failure susceptibility in the Han Chinese

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Piwi-interacting RNAs (piRNAs) are a broad group of noncoding small RNAs that have important biological functions in germline cells and can maintain genome integrity via silencing of retrotransposons. In this study, we aimed to explore the associations between genetic variants of important genes involved in piRNA biogenesis and male infertility with spermatogenic impairment.

Methods

To this end, five single-nucleotide polymorphisms (SNPs) in the ASZ1, PIWIL1, TDRD1, and TDRD9 genes were genotyped by TaqMan allelic discrimination assays in 342 cases of nonobstructive azoospermia (NOA) and 493 controls.

Results

The SNP rs77559927 in TDRD1 was associated with a reduced risk of spermatogenic impairment. The genotypes TC and TC + CC showed odds ratios and 95 % confidence intervals of 0.73 (0.55–0.98, P = 0.034) and 0.73 (0.56–0.97, P = 0.030), respectively, in patients with NOA compared with those in the controls.

Conclusion

Thus, our results provided the first epidemiological evidence supporting the involvement of TDRD1 genetic polymorphisms in piRNA processing genes in determining the risk of spermatogenic impairment in a Han Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dohle GR, Colpi GM, Hargreave TB, Papp GK, Jungwirth A, Weidner W, et al. EAU guidelines on male infertility. Eur Urol. 2005;48(5):703–11.

    Article  CAS  PubMed  Google Scholar 

  2. Okabe M, Ikawa M, Ashkenas J. Male infertility and the genetics of spermatogenesis. Am J Hum Genet. 1998;62(6):1274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734–45.

    Article  CAS  PubMed  Google Scholar 

  4. Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction. 2015;150(5):R159–74.

    Article  CAS  PubMed  Google Scholar 

  5. Massart A, Lissens W, Tournaye H, Stouffs K. Genetic causes of spermatogenic failure. Asian J Androl. 2012;14(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  6. Toshimori K, Ito C, Maekawa M, Toyama Y, Suzuki-Toyota F, Saxena DK. Impairment of spermatogenesis leading to infertility. Anat Sci Int. 2004;79(3):101–11.

    Article  CAS  PubMed  Google Scholar 

  7. Stouffs K, Seneca S, Lissens W. Genetic causes of male infertility. Ann Endocrinol (Paris). 2014;75(2):109–11.

    Article  Google Scholar 

  8. Stouffs K, Tournaye H, Liebaers I, Lissens W. Male infertility and the involvement of the X chromosome. Hum Reprod Update. 2009;15(6):623–37.

    Article  CAS  PubMed  Google Scholar 

  9. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006;442(7099):199–202.

    PubMed  Google Scholar 

  10. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, et al. The small RNA profile during drosophila melanogaster development. Dev Cell. 2003;5(2):337–50.

    Article  CAS  PubMed  Google Scholar 

  11. Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development. 2008;135(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  12. Yadav RP, Kotaja N. Small RNAs in spermatogenesis. Mol Cell Endocrinol. 2014;382(1):498–508.

    Article  CAS  PubMed  Google Scholar 

  13. Olivieri D, Sykora MM, Sachidanandam R, Mechtler K, Brennecke J. An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J. 2010;29(19):3301–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saito K, Ishizu H, Komai M, Kotani H, Kawamura Y, Nishida KM, et al. Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev. 2010;24(22):2493–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis.

  16. Deng W, Lin H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell. 2002;2(6):819–30.

    Article  CAS  PubMed  Google Scholar 

  17. Siomi MC, Mannen T, Siomi H. How does the royal family of Tudor rule the PIWI-interacting RNA pathway? Genes Dev. 2010;24(7):636–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu X., Zhi E., and Li Z., MOV10L1 in piRNA processing and gene silencing of retrotransposons during spermatogenesis. Reproduction, 2015. 149(5).

  19. Chen C, Jin J, James DA, Adams-Cioaba MA, Park JG, Guo Y, et al. Mouse Piwi interactome identifies binding mechanism of Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci U S A. 2009;106(48):20336–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, Kato Y, et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell. 2009;17(6):775–87.

    Article  CAS  PubMed  Google Scholar 

  21. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22(7):908–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ. 2012;54(1):78–92.

    Article  CAS  PubMed  Google Scholar 

  23. Aravin AA, Bourc’his D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev. 2008;22(8):970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12(4):503–14.

    Article  CAS  PubMed  Google Scholar 

  25. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128(6):1089–103.

    Article  CAS  PubMed  Google Scholar 

  26. World HO. Laboratory manual of the WHO for the examination of human semen and sperm-cervical mucus interaction. Ann Ist Super Sanita. 2001;37(1):I–XII. 1–123.

    Google Scholar 

  27. Li LB, Xia YK, Li XS, Lu J, Ma MF, Song L, et al. An analysis on chromosome X, Y and 18 in the spermatozoa of asthenospermia patients by triple-color fluorescence in situ hybridization. Zhonghua Nan Ke Xue. 2008;14(3):211–4.

    CAS  PubMed  Google Scholar 

  28. Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169(4):505–14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hadziselimovic F. Cryptorchidism, its impact on male fertility. Eur Urol. 2002;41(2):121–3.

    Article  CAS  PubMed  Google Scholar 

  30. Krausz C, Hoefsloot L, Simoni M, Tuttelmann F, European Academy of A., and European Molecular Genetics Quality N. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  31. Vernaeve V, Staessen CG, Van SA, Devroey P, Tournaye H. Can biological or clinical parameters predict testicular sperm recovery in 47, XXY Klinefelter’s syndrome patients? Hum Reprod. 2004;19(5):1135–9.

    Article  CAS  PubMed  Google Scholar 

  32. Pandey RR, Tokuzawa Y, Yang Z, Hayashi E, Ichisaka T, Kajita S, et al. Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci U S A. 2013;110(41):16492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Francesca N, Csilla K. Gene polymorphisms/mutations relevant to abnormal spermatogenesis. Reprod Biomed Online. 2008;16(4):504–13.

    Article  Google Scholar 

  34. Nishimune Y, Tanaka H. Infertility caused by polymorphisms or mutations in spermatogenesis-specific genes. J Androl. 2006;27(3):326–34.

    Article  CAS  PubMed  Google Scholar 

  35. Qin Y, Xia Y, Wei W, Han X, Lu C, Ji G, et al. Genetic variants in microRNA biogenesis pathway genes are associated with semen quality in a Han-Chinese population. Reprod Biomed Online. 2012;24(4):454–61.

    Article  CAS  PubMed  Google Scholar 

  36. Sanford JR, Ellis J, Cáceres JF. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans. 2005;33(Pt 3):443–6.

    Article  CAS  PubMed  Google Scholar 

  37. Zhoucun A, Sizhong Z, Yuan Y, Yiongxin M, Li L, Wei Z. Single nucleotide polymorphisms of the gonadotrophin-regulated testicular helicase (GRTH) gene may be associated with the human spermatogenesis impairment. Hum Reprod. 2006;21(3):755–9.

    Google Scholar 

  38. Sarkardeh H, Totonchi M, Asadpour O, Sadighi Gilani MA, Zamani EM, Almadani N, et al. Association of MOV10L1 gene polymorphisms and male infertility in azoospermic men with complete maturation arrest. J Assist Reprod Genet. 2014;31(7):865–71.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This study was supported by the Shanghai Municipal Commission of Health and Family Planning (No. 2013GY08), the Shanghai Hospital Development Center (Grant No: SHDC12014236), and the National High-Tech Research and Development Program (863) of China (2015AA020404).

Additional information

Capsule Thus, our results provided the first epidemiological evidence supporting the involvement of TDRD1 genetic polymorphisms in piRNA processing genes in determining the risk of spermatogenic impairment in a Han Chinese population.

Xiao-Bin Zhu and Jian-Qi Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 31 kb)

ESM 2

(DOCX 13 kb)

ESM 3

(XLS 525 kb)

ESM 4

(XLS 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XB., Lu, JQ., Zhi, EL. et al. Association of a TDRD1 variant with spermatogenic failure susceptibility in the Han Chinese. J Assist Reprod Genet 33, 1099–1104 (2016). https://doi.org/10.1007/s10815-016-0738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0738-9

Keywords

Navigation