Skip to main content
Log in

Seminal plasma homocysteine, folate and cobalamin in men with obstructive and non-obstructive azoospermia

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to analyze homocysteine, folate and cobalamin in men with normozoospermia, obstructive and non-obstructive azoospermia.

Methods

Analysis of plasma and seminal plasma homocysteine, folate and cobalamin in 72 azoospermic and 62 normozoospermic men. Evaluation of the azoospermic patient included testicular biopsy, endocrine, urological and ultrasound examination.

Results

Homocysteine (1.2 μmol/l) and cobalamin (322.05 pmol/l) concentrations (median values) in seminal plasma were significantly lower (p < 0.001) in men with azoospermia than in men with normozoospermia (2.5 μmol/l and 579.0 pmol/l). Folate and cobalamin concentrations were significantly higher in obstructive than in non-obstructive azoospermia. Significant correlations were determined between testis volume and seminal plasma homocysteine in azoospermic men.

Conclusion

Lower concentrations of homocysteine and cobalamin (but not folate) were found in azoospermic seminal plasma than normozoospermic. Folate and cobalamin were higher in seminal plasma from obstructive azoospermia than in non-obstructive azoospermia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Refsum H, Smith AD, Ueland PM, Nexo E, Clarke R, McPartlin J, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50:3–32.

    Article  CAS  PubMed  Google Scholar 

  2. Ebisch IMW, Peters WHM, Thomas CMG, Wetzels AMM, Peer PGM, Steegers-Theunissen RPM. Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. Hum Reprod. 2006;21:1725–33.

    Article  CAS  PubMed  Google Scholar 

  3. Pacchiarotti A, Mohamed MA, Micara G, Linari A, Tranquilli D, Espinola SB, et al. The possible role of hyperhomocysteinemia on IVF outcome. J Assist Reprod Genet. 2007;24:459–62.

    Article  PubMed  Google Scholar 

  4. Lewis SE, Sterling ES, Young IS, Thompson W. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril. 1997;67:142–7.

    Article  CAS  PubMed  Google Scholar 

  5. Boxmeer JC, Smit M, Weber RF, Lindemans J, Romijn JC, Eijkemans MJ, et al. Seminal plasma cobalamin significantly correlates with sperm concentration in men undergoing IVF or ICSI procedures. J Androl. 2007;28:521–7.

    Article  CAS  PubMed  Google Scholar 

  6. Boxmeer JC, Smit M, Utomo E, Romijn JC, Eijkemans MJ, Lindemans J, et al. Low folate in seminal plasma is associated with increased sperm DNA damage. Fertil Steril. 2009;92:548–56.

    Article  CAS  PubMed  Google Scholar 

  7. Wallock LM, Tamura T, Mayr CA, Johnston KE, Ames BN, Jacob RA. Low seminal plasma folate concentrations are associated with low sperm density and count in male smokers and nonsmokers. Fertil Steril. 2001;75(2):252–9.

    Article  CAS  PubMed  Google Scholar 

  8. Forges T, Monnier-Barbarion P, Alberto JM, Guécant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update. 2007;13:225–38.

    Article  CAS  PubMed  Google Scholar 

  9. Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1:107–23.

    Article  PubMed  Google Scholar 

  10. Tunc O, Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet. 2009;26:537–44.

    Article  PubMed  Google Scholar 

  11. Garrido N, Messeguer M, Alvarez J, Simon C, Pellicer A, Remohi J. Relationship among standard semen parameters, glutathione peroxidase/glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertil Steril. 2004;82(Suppl3):1059–66.

    Article  CAS  PubMed  Google Scholar 

  12. Wong WY, Thomas CMG, Merkus JMWM, Zielhuis GA, Steegers-Theunissen RPM. Male factor subfertility: possible causes and the impact of nutritional factors. Fertil Steril. 2000;73:435–42.

    Article  CAS  PubMed  Google Scholar 

  13. World Health Organization. Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. 4th edn. Cambridge University Press, 1999.

  14. Practice Committee of the American Society for Reproductive Medicine. Evaluation of the azoospermic male. Fertil Steril. 2008;90 Suppl 3:S74–7.

    Google Scholar 

  15. Dogra VS, Gottlieb RH, Oka M, Rubens DJ. Sonography of the scrotum. Radiology. 2003;227:18–36.

    Article  PubMed  Google Scholar 

  16. Practice Committee of the American Society for Reproductive Medicine. Report on varicocele and infertility. Fertil Steril. 2008;90 Suppl 5:S247–9.

    Google Scholar 

  17. Lee J, Binsaleh S, Lo K, Jarvi K. Varicoceles: diagnostic dilemma. J Androl. 2008;29:143–6.

    Article  PubMed  Google Scholar 

  18. Tamura T, Picciano MF. Folate and human reproduction. Am J Clin Nutr. 2006;83:993–1016.

    CAS  PubMed  Google Scholar 

  19. Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RPM. Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebo-controlled trial. Fertil Steril. 2002;77:491–8.

    Article  PubMed  Google Scholar 

  20. Holm J, Hansen SI, Hoier-Madsen M, Christensen TB, Nichols CW. Characterization of a high-affinity folate receptor in normal and malignant human testicular tissue. Biosci Rep. 1999;19:571–80.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathoplogy and aortic lipid deposition. Hum Mol Genet. 2001;10:433–43.

    Article  CAS  PubMed  Google Scholar 

  22. Nieschlag E, Behre HM, editors. Andrology. Male reproductive health and dysfunction. 2nd ed. Berlin, Heidelberg, New York: Springer-Verlag; 2001.

    Google Scholar 

  23. Cocuzza M, Athayde KS, Agarwal A, Pagani R, Sikka SC, Lucon AM, et al. Impact of clinical varicocele and testis size on seminal reactive oxygen species levels in a fertile population: a prospective controlled study. Fertil Steril. 2008;90:1103–8.

    Article  CAS  PubMed  Google Scholar 

  24. Paduch DA, Skoog SJ. Current management of adolescent varicocele. Rev Urol. 2001;3:120–33.

    CAS  PubMed  Google Scholar 

  25. Pront R, Margalioth EJ, Green R, Eldar-Geva T, Maimoni Z, Zimran A, et al. Prevalence of low serum cobalamin in infertile couples. Andrologia. 2009;4:46–50.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Internal Grant Agency (IGA) of the Ministry of Health of the Czech Republic-No. NS/9661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Crha.

Additional information

Capsule

Folate and cobalamin concentrations in seminal plasma are significantly higher in obstructive than in non-obstructive azoospermia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crha, I., Kralikova, M., Melounova, J. et al. Seminal plasma homocysteine, folate and cobalamin in men with obstructive and non-obstructive azoospermia. J Assist Reprod Genet 27, 533–538 (2010). https://doi.org/10.1007/s10815-010-9458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9458-8

Keywords

Navigation