Skip to main content
Log in

Nitrogen and Sulfur-Doped Carbon Quantum Dots Used as Fluorescent Probes

  • Published:
Journal of Applied Spectroscopy Aims and scope

Using hydrolyzed olive leaves as a carbon source and thiourea as a dopant, nitrogen-sulfur co-doped carbon quantum dots (NS-CQDs) were synthesized in the present work. The as-prepared NS-CQDs exhibited quasispherical morphology with an average particle size of 2–5 nm. Functional groups such as carboxyl and hydroxyl groups distributed on the surface of NS-CQDs were suggested to contribute to the good water solubility, biocompatibility, and strong fluorescence. Amphotericin B (AMB) was found to enhance the fluorescence intensity of NS-CQDs, whereas Fe(III) quenched the fluorescence of NS-CQDs. Taking advantage of such fluorescent characteristics, we established herein a quantitative method of measuring the content of AMB and Fe3+ in water, with detection limits of 10.0 and 7.4 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, and Z. Kang, Nanoscale, 5, 3289 (2013).

    Article  ADS  Google Scholar 

  2. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. A. Gearheart, K. Raker, and W. A. Scrivens, J. Am. Chem. Soc., 126, 12736 (2004).

    Article  Google Scholar 

  3. C. Wang, H. Lin, Z. Xu, Y. Huang, M. G. Humphrey, and C. Zhang, ACS Appl. Mater. Int., 8, 6621 (2016).

    Article  Google Scholar 

  4. S. Qu, X. Wang, Q. Lu, X. Liu, and L. Wang, Angew. Chem. Int. Edit., 51, 12215 (2012).

    Article  Google Scholar 

  5. E. A. Chandross, Chem. Mater., 26, 6083 (2014).

    Article  Google Scholar 

  6. C. Ding, A. Zhu, and Y. Tian, Acc. Chem. Res., 47, 20 (2014).

    Article  Google Scholar 

  7. Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff , X. Wang, and H. Wang, J. Am. Chem. Soc., 128, 7756 (2006).

    Article  Google Scholar 

  8. L. Li, T. Dong, J. Mater. Chem. C, 6, 7944 (2018).

    Article  Google Scholar 

  9. F. Wang, P. Chen, Y. Feng, Z. Xie, Y. Liu, Y. Su, Q. Zhang, Y. Wang, K. Yao, and W. Lv, Appl. Catal. B, 207, 103 (2017).

    Article  Google Scholar 

  10. G. A. M. Hutton, B. C. M. Martindale, and E. Reisner, Chem. Soc. Rev., 46, 6111 (2017).

    Article  Google Scholar 

  11. J. Zhang, S. Yu, Mater. Today, 19, 382 (2016).

    Article  Google Scholar 

  12. J. Shang guan, J. Huang, D. He, X. He, K. Wang, R. Ye, X. Yang, T. Qing, and J. Tang, Anal. Chem., 89, 7477 (2017).

  13. J. Tan, R. Zou, J. Zhang, W. Li, L. Zhang, and D. Yue, Nanoscale, 8, 4742 (2016).

    Article  ADS  Google Scholar 

  14. J. Hou, J. Dong, H. Zhu, X. Teng, S. Ai, and M. Mang, Biosens. Bioelectron., 68, 20 (2015).

    Article  Google Scholar 

  15. T. Han, T. Yan, Y. Li, W. Cao, X. Pang, Q. Huang, and Q. Wei, Carbon, 91, 144 (2015).

    Article  Google Scholar 

  16. S. Y. Lim, W. Shen, and Z. Gao, Chem. Soc. Rev., 44, No. 1, 362 (2015).

    Article  Google Scholar 

  17. H. Li, Z. Kang, Y. Liu, and S. Lee, J. Mater. Chem., 22, No. 46, 24230 (2012).

    Article  Google Scholar 

  18. K. Wang, Q. Ji, J. Xu, H. Li, D. Zhang, X. Liu, Y. Wu, and H. Fan, J. Fluoresc., 28, 759 (2018).

    Article  Google Scholar 

  19. R. Atchudan, T. N. J. I. Edison, D. Chakradhar, S. Perumal, J. Shim, and Y. R. Lee, Sensor. Act. B, 246, 497 (2017).

    Article  Google Scholar 

  20. S. Sharma, S. K. Mehta, and S. K. Kansal, Sensor. Act. B, 243, 1148 (2017).

    Article  Google Scholar 

  21. C. Zhang , Y. Cui, L. Song, X. Liu, and Z. Hu, Talanta, 150, 54 (2016).

    Article  Google Scholar 

  22. J. Wang, F. Qiu, H. Wu, X. Li, T. Zhang, X. Niu, D. Yang, J. Pan, and J. Xu, Spectrochim. Acta A, 179, 163 (2017).

    Article  ADS  Google Scholar 

  23. R. Tabaraki, O. Abdi, and S. Yousefipour, J. Fluoresc., 27, 651 (2017).

    Article  Google Scholar 

  24. H. Liu, Z. He, L. Jiang, and J. Zhu, ACS Appl. Mater. Int., 7, 4913 (2015).

    Article  Google Scholar 

  25. H. M. R. Goncalves, A. J. Duarte, and J. C. G. E. D. Silva, Biosens. Bioelectron., 26, 1302 (2010).

    Article  Google Scholar 

  26. Y. Guo, Z. Wang, H. Shao, and X. Jiang, Carbon, 52, 583 (2013).

    Article  Google Scholar 

  27. K. Yang, S. Wang, Y. Wang, H. Miao, and X. Yang, Biosens. Bioelectron., 91, 566 (2017).

    Article  Google Scholar 

  28. E. F. C. Simoes, J. C. G. E. D. Silva, and J. M. M. Leitao, Sensor. Act. B, 220, 1043 (2015).

    Article  Google Scholar 

  29. M. Luo, Y. Hua, Y. Liang, J. Han, D. Liu, W. Zhao, and P. Wang, Biosens. Bioelectron., 98, 195 (2017).

    Article  Google Scholar 

  30. W. Yang, J. Ni, F. Luo, W. Weng, Q. Wei, Z. Lin, and G. Chen, Anal. Chem., 89, 8384 (2017).

    Article  Google Scholar 

  31. P. Devi, G. Kaur, A. Thakur, N. Kaur, A. Grewal, and P. Kumar, Talanta, 170, 49 (2017).

    Article  Google Scholar 

  32. Z. Li, J. Zhang, Y. Li, S. Zhao, P. Zhang, Y. Zhang, J. Bi, G. Liu, and Z. Yue, Biosens. Bioelectron., 99, 251 (2018).

    Article  Google Scholar 

  33. J. Hou, H. Li, L. Wang, P. Zhang, T. Zhou, H. Ding, and L. Ding, Talanta, 146, 34 (2016).

    Article  Google Scholar 

  34. M. K. Gaydhane, P. Choubey, C. S. Sharma, and S. Majumdar, Mater. Today Commun., 24, 100953 (2020).

    Article  Google Scholar 

  35. A. M. Alak, S. Moy, and I. Bekersky, Ther. Drug Monit., 18, 604 (1996).

    Article  Google Scholar 

  36. J. L. Italia, D. Singh, and M. N. V. R. Kumar, Anal. Chim. Acta, 634, 110 (2009).

    Article  Google Scholar 

  37. U. S. Chakrabarty and T. K. Pal, J. Pharm. Res., 4, No. 9, 3194 (2011).

    Google Scholar 

  38. X. Xiong, S. Zhai, and F. Liu, Chromatographia, 70, 329 (2009).

    Article  Google Scholar 

  39. T. Eldem and N. Aricancellat, J. Pharmaceut. Biomed., 25, 53 (2001).

    Article  Google Scholar 

  40. Y. Chen, Y. Wu, B. Weng, B. Wang, and C. M. Li, Sensor. Act. B, 223, 689 (2016).

    Article  Google Scholar 

  41. J. Niu and H. Gao, J. Lumin., 149, 159 (2014).

    Article  Google Scholar 

  42. M. Yang, H. Li, J. Liu, W. Kong, S. Zhao, C. Li, H. Huang, Y. Liu, and Z. Kang, J. Mater. Chem. B, 2, 7964 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Wang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 89, No. 4, p. 592, July–August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, Y., Pang, X. et al. Nitrogen and Sulfur-Doped Carbon Quantum Dots Used as Fluorescent Probes. J Appl Spectrosc 89, 761–767 (2022). https://doi.org/10.1007/s10812-022-01422-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-022-01422-5

Keywords

Navigation