Skip to main content
Log in

Laser Atomic Emission Spectrometer with Achromatic Optical System

  • Published:
Journal of Applied Spectroscopy Aims and scope

A laser atomic emission multichannel spectrometer (LAEMS) with an achromatic optical configuration is developed for research and educational purposes. The new spectrometer fits all the requirements for equipment for laser atomic emission spectroscopy, and has a number of advantages owing to the features of the design and technical characteristics of its components. The excitation source for the spectrometer includes two Nd:YAG lasers pumped by semiconductor laser diode arrays with a controllable energy (from 0 to 100 mJ) and interval between between pulses (from 1 to 100 μs), and an average pulse duration of ≈15 ns. The LAEMS provides for studies in both a single pulse and a double pulse laser ablation regime and excitation of emission spectra. Double pulse laser ablation on the LAEMS provides a substantial (up to a factor of 10) increase in the analytic signal with a negligible (1.5–2 times) increase in surface damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Grifoni, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, and V. Palleschi, J. Spectrosc., 849310(1–5) (2014).

  2. W. Bauer, G. P. Perram, and T. Haugan, J. Appl. Phys., 123, 1–11 (2018).

    Article  Google Scholar 

  3. M. Corsi, G. Cristoforetti, M. Hildalgo, D. Iriatre, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Appl. Spectrosc., 57, No. 6, 715–721 (2003).

    Article  ADS  Google Scholar 

  4. V. S. Burakov, A. F. Bokhonov, M. I. Nedel'ko, and N. V. Tarasenko, Kvant. Élektron., 33, No. 12, 1065–1071 (2003).

    Article  ADS  Google Scholar 

  5. L. Radziemski and D. Cremers, Spectrochim. Acta: At. Spectr., 87, 3–10 (2013).

    Article  ADS  Google Scholar 

  6. E. S. Voropay, K. F. Ermalitskaia, and F. A. Ermalitskii, J. Appl. Spectrosc., 86, No. 2, 294–299 (2019).

    Article  ADS  Google Scholar 

  7. L. Joliveta, M. Leprince, S. Moncayo, L. Sorbier, C.-P. Lienemann, and V. Motto-Ros, Spectrochim. Acta: At. Spectr., 151, 41–53 (2019).

    Article  ADS  Google Scholar 

  8. Kh. Bazzal, A. R. Fadaiyan, and A. P. Zazhogin, Zh. Bel. Gos. Univ. Fizika, No. 1, pp. 34–42 (2017).

  9. M. P. Patapovich, Zh. I. Buloichik, I. D. Pashkovskaya, N. I. Nechipurenko, and A. P. Zazhogin, Zh. Bel. Gos. Univ. Fizika, No. 2, pp. 27–33 (2017).

  10. Zh. I. Buloichik, A. P. Zazhogin, N. I. Nechipurenko, M. P. Patapovich, and I. D. Pashkovskaya, Zh. Bel. Gos. Univ. Fizika, No. 1, pp. 9–17 (2018).

  11. K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zazhogin, J. Appl. Spectrosc., 77, No. 2, 153–159 (2010) .

    Article  ADS  Google Scholar 

  12. E. S. Voropai, I. M. Gulis, K. F. Ermalitskaya, F. W. Ermalitskii, K. N. Kaplevskii, A. E. Rad’ko, and K. A. Shevchenko, Pribory Tekhn. Éksperim., 4, 154–155 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Tarasau.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 3, pp. 485–492, May–June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voropay, E.S., Gulis, I.M., Tarasau, D.S. et al. Laser Atomic Emission Spectrometer with Achromatic Optical System. J Appl Spectrosc 88, 603–609 (2021). https://doi.org/10.1007/s10812-021-01215-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01215-2

Keywords

Navigation