Skip to main content

Advertisement

Log in

Morphology-Directed Nanoscopic Energy Transfers in Plasmonic-Organic Hybrids

  • Published:
Journal of Applied Spectroscopy Aims and scope

We have experimentally realized a morphology-directed nanoscale energy transfer between an emitter, Eosin yellow dye, and three distinct gold nanoshapes, namely, nanospheres, nanopebbles, and nanoflowers. Raman spectroscopy is employed to ensure mutual interaction among the couple hybrids. The results explicitly show that plasmonic structures with sharp edges produce a strong localized electromagnetic field, which substantially suppresses the background fluorescence signals of the analyte. Further, the relationship between the observed quenching of the dye fluorescence and the geometrical factors of the gold nanoshapes is used to comprehend the influence of energy transfers on their enhanced third-order nonlinearity. The experimental findings reveal a relationship between the efficiency of energy transfers and the enhancement of the observed nonlinear optical coefficients. This study may act as the basis for designing active photonic nanocomposites based on their efficient energy transfer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. T. Fofang, N. K. Grady, Z. Fan, A. O. Govorov, and N. J. Halas, Nano Lett., 11, No. 4, 1556–1560 (2011).

    Article  ADS  Google Scholar 

  2. M. R. Shcherbakov, P. P. Vabishchevich, A. S. Shorokhov, K. E. Chong, D.-Y. Choi, I. Staude, A. E. Miroshnichenko, D. N. Neshev, A. A. Fedyanin, and Y. S. Kivshar, Nano Lett., 15, No. 10, 6985–6990 (2015).

    Article  ADS  Google Scholar 

  3. D. E. Chang, V. Vuletić, and M. D. Lukin, Nature Photonics, 8, No. 9, 685–694 (2014).

    Article  ADS  Google Scholar 

  4. S.-J. Ding, F. Nan, D.-J. Yang, X.-L. Liu, Y.-L. Wang, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, Sci. Rep., 5, 9735–9748 (2015).

    Article  ADS  Google Scholar 

  5. M. Kucherenko, V. Stepanov, and N. Y. Kruchinin, Opt. Spectrosc., 118, No. 1, 103–110 (2015).

    Article  ADS  Google Scholar 

  6. A. J. Wilson and K. A. Willets, Ann. Rev. Anal. Chem., 9, No. 1, 27–43 (2016).

    Article  Google Scholar 

  7. T. Ming, L. Zhao, H. Chen, K. C. Woo, J. Wang, and H.-Q. Lin, Nano Lett., 11, No. 6, 2296–2303 (2011).

    Article  ADS  Google Scholar 

  8. C. Tserkezis, N. Stefanou, M. Wubs, and N. A. Mortensen, Nanoscale, 8, No. 40, 17532–17541 (2016).

    Article  Google Scholar 

  9. C. J. Breshike, R. A. Riskowski, and G. F. Strouse, J. Phys. Chem. C, 117, No. 45, 23942–23949 (2013).

    Article  Google Scholar 

  10. J.-F. Li, C.-Y. Li, and R. F. Aroca, Chem. Soc. Rev., 46, No. 13, 3962–3979 (2017).

    Article  Google Scholar 

  11. S.-J. Ding, F. Nan, X.-L. Liu, Z.-H. Hao, L. Zhou, J. Zeng, H.-X. Xu, W. Zhang, and Q.-Q. Wang, Sci. Rep., 7, No. 7, 43282–43289 (2017).

    Article  ADS  Google Scholar 

  12. T. L. Doane and C. Burda, Chem. Soc. Rev., 41, No. 7, 2885–2911 (2012).

    Article  Google Scholar 

  13. F. Nan, S.-J. Ding, L. Ma, Z.-Q. Cheng, Y.-T. Zhong, Y.-F. Zhang, Y.-H. Qiu, X. Li, L. Zhou, and Q.-Q. Wang, Nanoscale, 8, No. 32, 15071–15078 (2016).

    Article  Google Scholar 

  14. K. Okamoto, M. Funato, Y. Kawakami, and K. Tamada, J. Photochem. Photobiol. C: Photochem. Rev., 32, 58–77 (2017).

    Article  Google Scholar 

  15. N. Hoa, C. Ha, D. Nga, N. Lan, T. Nhung, and N. Viet, J. Phys.: Conf. Ser. IOP Publ. (2016) 012009.

  16. H. Chen, T. Ming, L. Zhao, F. Wang, L.-D. Sun, J. Wang, and C.-H. Yan, Nano Today, 5, No. 5, 494–505 (2010).

    Article  Google Scholar 

  17. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Song, Nanophotonics, 7, No. 1, 145–167 (2018).

    Article  Google Scholar 

  18. A. V. Panov, J. Mod. Opt., 60, No. 11, 915–919 (2013).

    Article  ADS  Google Scholar 

  19. M. A. Yurkin and A. A. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 171, 82–83 (2016).

    Article  ADS  Google Scholar 

  20. M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectrosc. Radiat. Transfer, 112, No. 13, 2234–2247 (2011).

    Article  ADS  Google Scholar 

  21. A. Rakovich, I. Nabiev, A. Sukhanova, V. Lesnyak, N. Gaponik, Y. P. Rakovich, and J. F. Donegan, ACS Nano, 7, No. 3, 2154–2160 (2013).

    Article  Google Scholar 

  22. R. Ho-Wu, S. H. Yau, and T. Goodson III, ACS Nano, 10, No. 1, 562–572 (2016).

    Article  Google Scholar 

  23. K. Gambhir, P. Sharma, A. Sharma, S. Husale, and R. Mehrotra, Dyes Pigments, 155, 313–322 (2018).

    Article  Google Scholar 

  24. T. Sen and A. Patra, J. Phys. Chem. C, 116, No. 33, 17307–17317 (2012).

    Article  Google Scholar 

  25. P. C. Ray, Z. Fan, R. A. Crouch, S. S. Sinha, and A. Pramanik, Chem. Soc. Rev., 43, No. 17, 6370–6404 (2014).

    Article  Google Scholar 

  26. S. Rakshit, S. P. Moulik, and S. C. Bhattacharya, J. Colloid Interface Sci., 491, 349–357 (2017).

    Article  ADS  Google Scholar 

  27. H. Sahoo, J. Photochem. Photobiol. C: Photochem. Rev., 12, No. 1, 20–30 (2011).

    Article  Google Scholar 

  28. E. Oh, A. L. Huston, A. Shabaev, A. Efros, M. Currie, K. Susumu, K. Bussmann, R. Goswami, F. K. Fatemi, and I. L. Medintz, Sci. Rep., 6, 35538–35547 (2016).

    Article  ADS  Google Scholar 

  29. K. Gambhir, B. Ray, R. Mehrotra, and P. Sharma, Opt. Laser Technol., 90, 201–210 (2017).

    Article  ADS  Google Scholar 

  30. Y. Jiang, X.-J. Wu, Q. Li, J. Li, and D. Xu, Nanotechnology, 22, No. 38, 385601–385611 (2011).

    Article  ADS  Google Scholar 

  31. N. G. Greeneltch, A. S. Davis, N. A. Valley, F. Casadio, G. C. Schatz, R. P. Van Duyne, and N. C. Shah, J. Phys. Chem. A, 116, No. 48, 11863–11869 (2012).

    Article  Google Scholar 

  32. J. R. Lombardi and R. L. Birke, J. Phys. Chem. C, 112, No. 14, 5605–5617 (2008).

    Article  Google Scholar 

  33. P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier (2017).

  34. V. A. Narayanan, D. L. Stokes, and T. Vo-Dinh, J. Raman Spectrosc., 25, No. 6, 415–422 (1994).

    Article  ADS  Google Scholar 

  35. T. Wang, X. Hu, and S. Dong, J. Phys. Chem. B, 110, No. 34, 16930–16936 (2006).

    Article  Google Scholar 

  36. F. Shan, X.-Y. Zhang, X.-C. Fu, L.-J. Zhang, D. Su, S.-J. Wang, J.-Y. Wu, and T. Zhang, Sci. Rep., 7, No. 1, 6813–6820 (2017).

    Article  ADS  Google Scholar 

  37. D. Wei, S. Chen, and Q. Liu, Appl. Spectrosc. Rev., 50, No. 5, 387–406 (2015).

    Article  ADS  Google Scholar 

  38. E. C. Le Ru, L. C. Schroeter, and P. G. Etchegoin, Anal. Chem., 84, No. 11, 5074–5079 (2012).

    Article  Google Scholar 

  39. B. Negru, M. O. McAnally, H. E. Mayhew, T. W. Ueltschi, L. Peng, E. A. Sprague-Klein, G. C. Schatz, and R. P. Van Duyne, J. Phys. Chem. C, 121, No. 48, 27004–27008 (2017).

    Article  Google Scholar 

  40. P. Matousek, M. Towrie, C. Ma, W. Kwok, D. Phillips, W. Toner, and A. Parker, J. Raman Spectrosc., 32, No. 12, 983–988 (2001).

    Article  ADS  Google Scholar 

  41. E. W. Van Stryland and M. Sheik-Bahae, In Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Routledge (2018), pp. 671–708.

  42. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett., 14, No. 17, 955–957 (1989).

    Article  ADS  Google Scholar 

  43. S. Eustis and M. A. El-Sayed, Chem. Soc. Rev., 35, No. 3, 209–217 (2006).

    Article  Google Scholar 

  44. L. M. Liz-Marzán, Langmuir, 22, No. 1, 32–41 (2006).

    Article  Google Scholar 

  45. N. Sadegh, H. Khadem, and S. Tavassoli, Appl. Opt., 55, No. 22, 6125–6129 (2016).

    Article  ADS  Google Scholar 

  46. D. W. Marquardt, J. Soc. Ind. Appl. Math., 11, No. 2, 431–441 (1963).

    Article  Google Scholar 

  47. S. Link and M. A. El-Sayed, Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods, ACS Publ. (1999).

  48. M. A. Mahmoud, D. O'Neil, and M. A. El-Sayed, Nano Lett., 14, No. 2, 743–748 (2014).

    Article  ADS  Google Scholar 

  49. A. De Luca, R. Dhama, A. Rashed, C. Coutant, S. Ravaine, P. Barois, M. Infusino, and G. Strangi, Appl. Phys. Lett., 104, No. 10, 103103–103117 (2014).

    Article  ADS  Google Scholar 

  50. T. Sen, S. Sadhu, and A. Patra, Appl. Phys. Lett., 91, No. 4, 043104–043115 (2007).

    Article  ADS  Google Scholar 

  51. C. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. Reich, and G. Strouse, J. Am. Chem. Soc., 127, No. 9, 3115–3119 (2005).

    Article  Google Scholar 

  52. T. Jennings, M. Singh, and G. Strouse, J. Am. Chem. Soc., 128, No. 16, 5462–5467 (2006).

    Article  Google Scholar 

  53. A. McLintock, H. J. Lee, and A. W. Wark, Phys. Chem. Chem. Phys., 15, No. 43, 18835–18843 (2013).

    Article  Google Scholar 

  54. L. Huang, M. Rudolph, F. Rominger, and A. S. K. Hashmi, Angew. Chem. Int. Ed., 55, No. 15, 4808–4813 (2016).

    Article  Google Scholar 

  55. A. S. K. Hashmi and G. J. Hutchings, Angew. Chem. Int. Ed., 45, No. 47, 7896–7936 (2006).

    Article  Google Scholar 

  56. J. Xie, S. Shi, T. Zhang, N. Mehrkens, M. Rudolph, and A. S. K. Hashmi, Angew. Chem. Int. Ed., 54, No. 20, 6046–6050 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sharma.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, p. 171, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambhir, K., Sharma, P. & Mehrotra, R. Morphology-Directed Nanoscopic Energy Transfers in Plasmonic-Organic Hybrids. J Appl Spectrosc 88, 203–214 (2021). https://doi.org/10.1007/s10812-021-01159-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01159-7

Keywords

Navigation