Skip to main content
Log in

Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10–2 Ω–1·m–1 at 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol., 3, 270–274 (2008).

    Article  Google Scholar 

  2. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science, 315, 1379–1385 (2007).

    Article  ADS  Google Scholar 

  3. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science, 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  4. K. F. Mak, M.Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett., 101, 1964051-4 (2008).

    Article  Google Scholar 

  5. Z. F. Liu, Q. Liu, Y. Huang, Y.F. Ma, S. Yin, X.Y. Zhang, W. Sun, and Y. S. Chen, Adv. Mater., 20, 3924–3930 (2008).

    Article  Google Scholar 

  6. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater., 6, 652–655 (2007).

    Article  ADS  Google Scholar 

  7. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 10, 498–502 (2008).

    Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  9. V. Barone, O. Hod, and G. E. Scuseria, Nano Lett., 6, 2748–2754 (2006).

    Article  ADS  Google Scholar 

  10. D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, Nano Lett., 9, 1752–1758 (2009).

    Article  ADS  Google Scholar 

  11. C. Xu, X. Wang, and J. W. Zhu, J. Phys. Chem. C, 112, 19841–19845 (2008).

  12. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, 1487–1491 (2008).

    Article  Google Scholar 

  13. K. S. Divya, T. U. Umadevi, and S. Mathew, J. Nanosci. Lett., 4, 212–224 (2014).

  14. N. S. Wadtkar and S. A. Waghuley, Egypt. J. Bask. Appl. Sci., 2, 19–24 (2015).

    Google Scholar 

  15. Y. S. Liu, J. Y. Zhou, X. L. Zhang, Z. Liu, X. G. Wana, J. G. Tian, T. Wanga, and Y. S. Chen, Carbon, 47, 3113–3121 (2009).

    Article  Google Scholar 

  16. X. Q. Zhang, Y. Y. Feng, D. Huang, Y. Li, and W. Feng, Carbon, 48, 3236–3241 (2010).

    Article  Google Scholar 

  17. P. G. McCormick, T. Tsuzuki, J. S. Robinson, and J. Ding, Adv. Mater., 13, 1008–1010 (2001).

    Article  Google Scholar 

  18. J.-S. Kim, D.-H. Lee, S. Kang, D.-S. Bae, H.-Y. Park, and M.-K. Na, Trans. Nonferrous Met. Soc. China, 19, 88–91 (2009).

    Article  Google Scholar 

  19. J. L. Gole, S. M. Prokes, J. D. Stout, O. J. Glembocki, and R. Yang, Adv. Mater., 18, 664–669 (2006)

    Article  Google Scholar 

  20. A. V. Murugan, A. B. Gaikwad, V. Samuel, and V. Ravi, Bull. Mater. Sci., 29, 221–223 (2006).

    Article  Google Scholar 

  21. K. R. Nemade and S. A. Waghuley, J. Electron. Mater., 42, 2857–2866 (2013).

  22. S. A. Waghuley, S. M. Yenorkar, S. S. Yawale, and S. P. Yawale, Sens. Actuators B: Chem, 128, 366–373 (2008).

    Article  Google Scholar 

  23. P. B. Rathod, K. R. Nemade, and S. A. Waghuley, Int. J. Chem. Pharm. Sci., 4, 491–495 (2015).

    Google Scholar 

  24. S. Singh, Phys. Scr., 65, 167–180 (2002).

    Article  ADS  Google Scholar 

  25. K. R. Nemade and S. A. Waghuley, Int. J. Met., doi: 10.1155/2014/389416 (2014).

  26. M. Landmann, E. Rauls, and W. G. Schmidt, J. Phys. Condens. Matter, 24, 1–6 (2012).

  27. T. G. Xu, L. W. Zhang, H. Y. Cheng, and Y. F. Zhu, Appl. Catal. B: Environ., 101, 382–387 (2011).

    Article  Google Scholar 

  28. K. R. Nemade and S. A. Waghuley, Result Phys., 3, 52–54 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Waghuley.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 4, pp. 573–578, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, P.B., Waghuley, S.A. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy. J Appl Spectrosc 83, 586–591 (2016). https://doi.org/10.1007/s10812-016-0332-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0332-z

Keywords

Navigation