Skip to main content

Advertisement

Log in

Feasibility of waste-free use of microalgae in aquaculture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Following the circular bioeconomy approach, this study shows the possibility of effective microalgal bioremediation of aquaculture wastewater integrated with the production of protein-rich biomass, which can be used as a feed additive. Screening was carried out among strains of Chlorella vulgaris BB-2, Parachlorella kessleri Bh-2 and Chlamydomonas reinhardtii C-124 with the aim of selecting the strain which is characterized by high indicators of growth in the fish farms wastewaters. Among these three strains, C. vulgaris BB-2 was selected due to its increased growth rate in aquaculture wastewater with ammonia, nitrite, and nitrate and phosphate removal. In addition, in the water when cultivating microalgae in it the coliform index and total microbial number decreased to 5 and 1.8 × 103 colony-forming unit cm−3. Large-scale microalgae cultivation utilizing aquaculture wastewater gave biomass production of 43.5 mg L−1 day−1. The biochemical composition analysis of the aquaculture wastewater phycoremediation-derived biomass of C. vulgaris BB-2 revealed that the content of 57.0 ± 1.2% protein, 16 ± 1.2% lipid, and 11.4 ± 1.4% carbohydrate. The obtained data indicate that the lipid extract of microalgae C. vulgaris BB-2 contained saturated 30.7% and polyunsaturated fatty acids 69.3%. The main fraction of amino acids consisted of glutamic acid, lysine, aspartic acid and leucine. The utilization of 25% microalgal biomass as a feed additive in the diet of fish has shown a positive effect on the morpho-physiological and biochemical growth parameters and intestinal microflora of Nile tilapia (Oreochromis niloticus).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. All other relevant data are available from the corresponding authors upon reasonable request.

References

  • Abdelghany MF, El-Sawy HB, Abd El-Hameed SAA, Khames MK, Abdel-Latif HMR, Naiel MAE (2020) Effects of dietary Nannochloropsis oculata on growth performance, serum biochemical parameters, immune responses, and resistance against Aeromonas veronii challenge in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immun 107:277–288

    Article  CAS  Google Scholar 

  • Al-Jabri H, Das P, Khan S, Thaher M, AbdulQuadir M (2021) Treatment of wastewaters by microalgae and the potential applications of the produced biomass — A review. Water 13:27

    Article  CAS  Google Scholar 

  • Allakhverdiev ES, Khabatova VV, Kossalbayev BD, Zadneprovskaya E, Rodnenkov O, Martynyuk T, Maksimov G, Alwasel S, Tomo T, Allakhverdiev S (2022) Raman spectroscopy and its modifications applied to biological and medical research. Cells 11:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DP, Robertson BS, Dixon OW (1979) Plaque-forming cells and humoral antibody in rainbow trout (Salmo gairdneri) induced by immersion in a Yersinia ruckeri O-antigen preparation. J Fish Res Board Can 36:636–639

    Article  Google Scholar 

  • Andreeva AM (2008) Structural-functional organization of blood proteins and some other extracellular fluids in fish. PhD Thesis, IBIW RAS, Moscow

  • APHA (1999) Standard methods for the examination of water and wastewater part 1000 standard methods for the examination of water and wastewater, 20th edn., Washington

  • BenítezSantana T, Masuda R, Carrillo EJ, Ganuza E, Valencia A, HernándezCruz CM, Izquierdo M (2007) Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus aurata larvae. Aquaculture 264:408–417

    Article  Google Scholar 

  • Bhuyar P, Yusoff MM, Rahim MH, Sundararaju S, Maniam GP, Govindan N (2020) Effect of plant hormones on the production of biomass and lipid extraction for biodiesel production from microalgae Chlorella sp. J Microbiol Biotechnol Food Sci 9:671–674

    Article  CAS  Google Scholar 

  • Bhuyar P, Trejo M, Dussadee N, Unpaprom Y, Ramaraj R, Whangchai K (2021) Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Sci Technol 84:2686–2694

    Article  CAS  PubMed  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:33

    Article  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–914

    Article  CAS  PubMed  Google Scholar 

  • Bolatkhan K, Sadvakasova AK, Zayadan BK, Kakimova A, Sarsekeyeva F, Kossalbayev B, Bozieva A, Alwasel S, Allakhverdiev S (2020) Prospects for the creation of a waste-free technology for wastewater treatment and utilization of carbon dioxide based on cyanobacteria for biodiesel production. J Biotechnol 324:162–170

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Tello K, Ehrenfeld N, Solís CJ, Ulloa PE, Herrera M, Pizarro-Guajardo M (2017) Effect of microalgae on intestinal inflammation triggered by soybean meal and bacterial infection in zebrafish. PLoS ONE 12:e187696

    Article  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of in organic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  CAS  PubMed  Google Scholar 

  • Campbell D, Hamill K, Hamill P (2003) Microbiological water quality guidelines for marine and freshwater recreational areas. Ministry for the Environment, Wellington, New Zealand

  • Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Pub Env Health 2:19–32. ISSN 2360-8803

  • Chew YL, Lim Y, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT- Food Sci Technol 41:1067–1072

    Article  CAS  Google Scholar 

  • Cho YH, Nielsen SS (2017) Phosphorus determination by Murphy-Riley Method. In: Nielsen SS (ed) Food analysis laboratory manual. Springer, Cham

  • Cnaani A, Tinman S, Avidar Y, Ron M, Hulata G (2004) Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquacult Res 35:1434–1440

    Article  CAS  Google Scholar 

  • Cowie RA (2013) Quality assurance for microbiology in feed analysis laboratories. FAO, Rome

  • Craig S, Helfrich L (2017) Understanding fish nutrition, feeds, and feeding. Virginia Polytechnic Institute and State University, Virginia Cooperative Extension Publication, pp 420–256

    Google Scholar 

  • Dickinson KE, Whitney CG, Mcginn PJ (2013) Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus AMD. Algal Res 2:127–134

    Article  Google Scholar 

  • Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dubois MKG, Gilles KA, Hamilton JK, Rebers PA (2002) Calorimetric Dubois method for determination of sugar and related substances. Anal Chem 28:350–356

    Article  Google Scholar 

  • Dutra FM, Freire C, Vas-dos-Santos A, Forneck S, Brazao C, Ballester E (2016) Acute toxicity of nitrite to various life stages of the amazon river prawn, Macrobrachium amazonicum, Heller, 1862. Bull Env Contam Toxicol 97:619–625

    Article  CAS  Google Scholar 

  • El-Sayed AM (ed) (2006) Tilapia Culture. CABI Publishing, Alexandria

    Google Scholar 

  • Fadl SE, El Gohary M, El Saadany AY, God DM, Hanaa FF, El-Habashi N (2017) Contribution of microalgae-enriched fodder for the Nile tilapia to growth and resistance to infection with Aeromonas hydrophila. Algal Res 27:82–88

    Article  Google Scholar 

  • FAO (2018) The State of World Fish farms and Aquaculture. Meeting the sustainable development goals, FAO, Rome

    Google Scholar 

  • Ferreira A, Melkonyan LG, Carapinha S, Ribeiro B, Figueiredo DR, Avetisova G, Gouveia L (2021) Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environ Adv 4:100062

    Article  CAS  Google Scholar 

  • Gao F, Li C, Yang ZH, Zeng GM, Feng LJ, Liu JZ, Liu M, Cai HW (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61

    Article  Google Scholar 

  • Glencross BD (2009) Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev Aquacult 204:89–99

    Google Scholar 

  • Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel ÉP, Neto PC, Ferreira AF, Silva C (2016) Microalgae biomass production using wastewater: Treatment and costs. Algal Res 16:167–176

    Article  Google Scholar 

  • Grammes F, Reveco FE, Romarheim OH, Landsverk T, Mydland LT, Øverland M (2013) Candida utilis and Chlorella vulgaris counteract intestinal inflammation in Atlantic Salmon (Salmo salar L). PLoS ONE 8:e83213

    Article  PubMed  PubMed Central  Google Scholar 

  • Guedes AC, Malcata FX (2012) Nutritional value and uses of in aquaculture. In: Muchlisin ZA (ed) Aquaculture, IntechOpen, London, pp 59–78

  • Guerrero-Cabrera L, Rueda JA, García-Lozano H, Navarro AK (2014) Cultivation of Monoraphidium, Chlorella and Scenedesmus algae in batch culture using Nile tilapia effluent. Bioresour Technol 161:455–460

    Article  CAS  PubMed  Google Scholar 

  • Guldhe A, Ansari FA, Singh P, Bux F (2016) Microalgal cultivation using aquaculture wastewater: Integrated biomass generation and nutrient remediation. Algal Res 21:47–53

    Google Scholar 

  • Hasan MR, Chakrabarti R (2009) Use of algae and aquatic macrophytes as feed in small-scale aquaculture. FAO, Rome

    Google Scholar 

  • Hend A, Perveen K (2017) Antibacterial activity and morphological changes in human pathogenic bacteria caused by Chlorella vulgaris extracts. Biomed Res J (india) 28:1610–1614

    Google Scholar 

  • Hernández D, Molinuevo-Salces B, Riaño B, Larrán-García AM, Tomás-Almenar C, García-González MC (2018) Recovery of protein concentrates from microalgal biomass grown in manure for fish feed and valorization of the by-products through anaerobic digestion. Front Sustain Food Syst 28:1–11

    Google Scholar 

  • Holt JG (1993) Bergey’s manual of determinative bacteriology. 9th Edition, Williams & Wilkins, Baltimore, Maryland

  • Huss HH (1995) Quality and quality changes in fresh fish. FAO, Rome 195 p

  • ISO 7218:2007 Microbiology of food and animal feeding stuffs (2007) General requirements and guidance for microbiological examinations

  • Jacob-Lopes E, Henrique C, Scoparo G, Marra L, Lacerda C, Franco T (2009) Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem Eng Process 48:306–310

    Article  CAS  Google Scholar 

  • Jardine TD, Galloway AWE, Kainz MJ (2020) Unlocking the power of fatty acids as dietary tracers and metabolic signals in fishes and aquatic invertebrates. Philos Trans R Soc 375:20190639

    Article  CAS  Google Scholar 

  • Jutfelt F (2011) Encyclopedia of fish physiology. Academic Press, London

    Google Scholar 

  • Karthick P, Mohanraju R, Kada NM, Ramesh CH (2015) Antibacterial activity of seaweeds collected from South Andaman, India. J Algal Biomass Util 6:33–36

    Google Scholar 

  • Khani M, Soltani M, Shamsaie Mehrjan M, Foroudi F, Ghaeni M (2017) Short communication: The effects of Chlorella vulgaris supplementation on growth performance, blood characteristics, and digestive enzymes in Koi (Cyprinus carpio). Iran J Fish Sci 16:832–843

    Google Scholar 

  • Kothari R, Pathak VV, Kumar V, Singh D (2012) Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy wastewater: an integrated approach for treatment and biofuel production. Bioresour Technol 116:466–470

    Article  CAS  PubMed  Google Scholar 

  • Kousoulaki K, Morkore T, Nengas I, Berge RK, Sweetman J (2016) Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.). Aquaculture 451:47–57

    Article  CAS  Google Scholar 

  • Lee Y, Chen W, Shen H, Han D, Li Y, Jones HDT, Timlin JA, Hu Q (2013) Basic culturing and analytical measurement techniques. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell, New York. p 37–68

  • Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116

    Article  CAS  PubMed  Google Scholar 

  • Lim C, Yildirim-Aksoy M, Klesius P (2011) Lipid and fatty acid requirements of tilapia. N Am J Aquac 73:188–193

    Article  Google Scholar 

  • Liu J, Ge Y, Chang H, Wu L, Tian G (2013) Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system. Bioresour Technol 139:190–194

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu Y, Wu C, Muylaert K, Vyverman W, Yu H, Muñoz R, Rittmann BE (2017) Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review. Bioresour Technol 241:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr A, Randall RJ (1951) Protein measurement with the Folin-phenol reagents. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Mandalam RK, Palsson BO (1995) Chlorella vulgaris (Chlorellaceae) does not secrete autoinhibitors at high cell densities. Am J Bot 82:955–963

    Article  CAS  Google Scholar 

  • Michelon W, da Silva MLB, Matthiensen A, Silva E, Pilau EJ, de Oliveira NE (2021) Microalgae produced during phycoremediation of swine wastewater contains effective bacteriostatic compounds against antibiotic-resistant bacteria. Chemosphere 283:131268

    Article  CAS  PubMed  Google Scholar 

  • Mikodina EV (2009) Histology for Ichthyologists: Experience and Advice. VNIRO Publishing, Moscow

  • Mishra K, Samantaray K (2004) Interacting effects of dietary lipid level and temperature on growth, body composition and fatty acid profile of rohu, Labeo rohita (Hamilton). Aquac Nutr 10:359–369

    Article  CAS  Google Scholar 

  • Mohsenpour SF, HennigeS WN, Adeloye AJ, Gutierrez T (2021) Integrating microalgae into wastewater treatment: A review. Sci Total Environ 752:142168

    Article  CAS  PubMed  Google Scholar 

  • Morais MG, Vaz BS, Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 3:83–87

    Google Scholar 

  • Mostafa S (2012) Microalgal biotechnology: Prospects and applications. In: Dhal NK, Sahu SC (eds) Plant Science. Intechopen, Riejeka, pp 275–314

    Google Scholar 

  • Niccolai A, Zittelli GC, Rodolfi L, Biondi N, Tredici MR (2019) Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res 42:101617

    Article  Google Scholar 

  • Oluwaniyi OO, Dosumu OO, Awolola GV (2010) Effect of processing methods (boiling, frying and roasting) on the amino acid composition of four marine fishes commonly consumed in Nigeria. Food Chem 123:1000–1006

    Article  CAS  Google Scholar 

  • Óscar JS, Pedro JB, Liliana S (2019) Review of Lactobacillus in the food industry and their culture media. Rev Colomb Biotecnol 21:602–610

    Google Scholar 

  • Patil V, Kallqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15:1–9

    Article  CAS  Google Scholar 

  • Paul RE, Claire K (2001) Human effects on ecosystems. Overview. III.B. Fisheries decline. Encyclopedia of Biodiversity. Elsevier, New York, pp 383–393

    Google Scholar 

  • Pradhan J, Das S, Das BK (2014) Antibacterial activity of freshwater: A review. Afr J Pharm Pharmacol 32:809–818

    Google Scholar 

  • Quico CA, Astocondor MM, Ortega RA (2021) Dietary supplementation with Chlorella peruviana improve the growth and innate immune response of rainbow trout Oncorhynchus mykiss fingerlings. Aquaculture 533:1–29

    Google Scholar 

  • Reyes-Becerril M, Guardiola F, Rojas M, Ascencio-Valle F, Esteban MA (2013) Dietary administration of microalgae Navicula sp. affects immune status and gene expression of gilthead seabream (Sparus aurata). Fish Shell Immun 35:883–889

    Article  CAS  Google Scholar 

  • Reyes-Becerril M, Angulo C, Estrada N, Murillo Y, Ascencio-Valle F (2014) Dietary administration of microalgae alone or supplemented with Lactobacillus sakei affects immune response and intestinal morphology of Pacific red snapper (Lutjanus peru). Fish Shell Immun 40:208–216

    Article  CAS  Google Scholar 

  • Ruiz-Capillas C, Moral A (2004) Free amino acids in muscle of Norway lobster (Nephrops novergicus (L.) in controlled and modified atmospheres during chilled storage. Food Chem 86:85–91

    Article  CAS  Google Scholar 

  • Sadvakasova AK, Kossalbayev BD, Zayadan B, Kirbayeva DK, Alwasel S, Allakhverdiev SI (2021) Potential of cyanobacteria in the conversion of wastewater to biofuels. World J Microbiol Biotechnol 37:140

    Article  CAS  PubMed  Google Scholar 

  • Sadvakasova AK, Kossalbayev BD, To kenAI, Bauenova MO, Wang J, Zayadan B, Balouch H, Alwasel S, Leong YK, Chang J, Allakhverdiev SI (2022) Influence of Mo and Fe on photosynthetic and nitrogenase activities of nitrogen-fixing cyanobacteria under nitrogen starvation. Cells 11:904

  • Santhakumaran P, Ayyappan SM, Ray JG (2020) Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Res 47:101878

    Article  Google Scholar 

  • Sarker PK, Kapuscinski AR, McKuin B, Fitzgerald DS, Nash HM, Greenwood C (2020) Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci Rep 10:19328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ścieszka S, Klewicka E (2020) Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. bacteria. Foods 9:959

    Article  PubMed Central  Google Scholar 

  • Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30:197–213

    Article  Google Scholar 

  • Shcherbina MA, Burlachenko I, Myshkin AV, Sukhov KV, Safronov AS, Bondarenko OA, Grigoriev VS (2019) The expediency of special prewinter feeding of sturgeon females in industrial conditions. Trudy VNIRO 175:175–190.

  • Simanjuntak S, Indarmawan I, Wibowo E (2018) Impact of fed containing different levels of diets supplementation Spirulina platensis on growth, haematological, body composition and biochemical parameters, of Gurami (Osphronemus gouramy). Turk J Fish Aquat Sci 18:681–690

    Article  Google Scholar 

  • Sklan D, Prag T, Lupatsch I (2004) Structure and function of the small intestine of the tilapia Oreochromis niloticus, Oreochromis aureus (Teleostei, Cichlidae). Aquac Res 35:350–357

    Article  Google Scholar 

  • Smith BJ, Smith SA, Tengjaroenkul B, Lawrence TA (2000) Gross morphology and topography of the adult intestinal tract of the tilapian fish, Oreochromis niloticus L. Cells Tissues Organs 166:294–303

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Lu J, Yoshizaki G, Satoh S (2002) Effect on the growth and body composition of juvenile tilapia Oreochromis niloticus fed raw Spirulina. Fish Sci 68:34–40

    Article  CAS  Google Scholar 

  • Talaiekhozani A, Alaee S, Mohanadoss P, Knowledge I (2015) Guidelines for quick application of biochemical tests to identify unknown bacteria. Accounts Biotech Res 2:65–82

    Google Scholar 

  • Tartiel MB (2005) Physiological studies on some green algae. PhD thesis, Cairo University, Egypt

  • Thorpe A, Timirkhanov S, Chalkin BA, Makhambetova Z, Anrooy RV (2010). Fish farms and aquaculture in the Republic of Kazakhstan: a review. FAO Fish farms and Aquaculture Circular 1030(2)

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tossavainen M, Lahti K, Edelmann M, Eskola R, Lampi A-M, Piironen V, Korvonen P, Ojala A, Romantschuk M (2019) Integrated utilization of microalgae cultured in aquaculture wastewater: wastewater treatment and production of valuable fatty acids and tocopherols. J Appl Phycol 31:1753–1763

    Article  CAS  Google Scholar 

  • Watson RA, Tidd A (2018) Mapping nearly a century and a half of global marine fishing: 1869–2015. Mar Policy 93:171–177

    Article  Google Scholar 

  • Wilhelm FM (2009) Pollution of aquatic ecosystems I. In: Likens GE (ed) Encyclopedia of Inland Waters; Academic Press, Cambridge, MA pp 110–119

  • Wollmann F, Dietze S, Ackermann JU, Bley T, Walther T, Steingroewer J, Krujatz F (2019) Microalgae wastewater treatment: Biological and technological approaches. Eng Life Sci 19:860–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Gao Z, Qi Z, Qiu M, Peng J, Shao R (2014) Effect of dietary Chlorella on the growth performance and physiological parameters of gibel carp, Carassius auratus gibelio. Turk J Fish Aquat Sci 14:53–57

    Google Scholar 

  • Yamaguchi K (1996) Recent advance in micro-algal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. J Appl Phycol 8:487–502

    Article  Google Scholar 

  • Yildiz FH, Liu XS, Heydorn A, Schoolnik GK (2002) Molecular analysis of rugosity in a Vibrio cholera O1 El Tor phase variant. Mol Microbiol 53:497–515

    Article  Google Scholar 

  • Yu J, Starr DA, Wu X, Parkhurst SM, Zhuang Y, Xu R, Han M (2006) The KASH domain protein MSP-300 plays an essential role in nuclear anchoring during Drosophila oogenesis. Dev Biol 289:336–345

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Kim J, Lee C (2019) Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Sci Rep 9:6123

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan YV, Carrington MF, Walsh NA (2005) Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Zayadan B, Usserbayeva AA, Bolatkhan K, Mukhanov A, Kossalbayev BD, Baizhigitova A, Los DA (2018) Screening of isolated and collection strains of cyanobacteria on productivity for determining their biotechnological potential. Eur J Entomol 55:121–130

    Google Scholar 

  • Zayadan BK, Akmukhanova NR, Sadvakasova AK (2013) Collection of and methods of their cultivation. Kazakh University, Almaty, p 342

    Google Scholar 

  • Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was founded by the Ministry of Education and Science of the Republic of Kazakhstan in the framework of the project: AP09260077, AP08052402; SA would like to thank the Distinguished Scientists Fellowship Program, King Saud University, Saudi Arabia, for their support. YKL, JSC and SIA was supported by the grant RSF-MOST (22–44-08001). The part of results (Tables 6 and 8) was obtained within the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. 121033000136–4).

Author information

Authors and Affiliations

Authors

Contributions

NRA: Conceptualization, Methodology, Software, Formal analysis, Investigation, Resources, Data curation, Writing the original draft. AKS: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Data curation, Writing the original draft, Project administration. MMT: Formal analysis, Investigation, Resources, Data curation, Writing the original draft. BKZ: Conceptualization, Methodology, Software. SMS: Conceptualization, Methodology, Software. MOB: Formal analysis, Investigation, Resources, Data curation, Writing the original draft. SA: Conceptualization, Methodology, Software, Formal analysis. YKL: Validation, Writing-Reviewing and Editing. JSC and SIA: Conceptualization, Methodology, Software, Writing the original draft, Project administration, Writing-Reviewing and Editing. All the authors contributed in writing of the final version and approved the manuscript.

Corresponding author

Correspondence to Suleyman I. Allakhverdiev.

Ethics declarations

Competing interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akmukhanova, N.R., Sadvakasova, A.K., Torekhanova, M.M. et al. Feasibility of waste-free use of microalgae in aquaculture. J Appl Phycol 34, 2297–2313 (2022). https://doi.org/10.1007/s10811-022-02787-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02787-y

Keywords

Profiles

  1. Yoong Kit Leong