Skip to main content
Log in

Promoting the simultaneous removal of Microcystis bloom and microcystin-RR by Bacillus sp. AK3 immobilized on floating porous glass pellets

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Harmful cyanobacterial blooms are global pollution problems. Algicidal bacteria, an effective method to control cyanobacteria that is widely studied in the laboratory, is often less effective when used in natural environments. A bacterium Bacillus sp. AK3, which has algicidal and microcystin-RR (MC-RR) degradation abilities, was used in this study. We determined the efficacy of Bacillus sp. AK3 in removing Microcystis sp. AARL C028 and MC-RR under laboratory conditions. Based on the results, Bacillus sp. AK3 can remove 100% of Microcystis sp. AARL C028 and 73% of extracted-MC-RR within 3 days, respectively. To improve the application of bacteria under natural cyanobacterial bloom conditions, floating porous glass pellets (FPGPs) were synthesized to serve as supporting material for bacterial immobilization. Based on SEM images, Bacillus sp. AK3 cells adhered to the surface of FPGPs by the action of the bacterial extracellular matrix. Bacillus sp. AK3 immobilized on FPGPs exhibited a higher algicidal efficiency than freely suspended cells. Under natural Microcystis spp. bloom conditions, the FPGPs can maintain the bacterial cells attached on their surface at around 19 × 107 CFU g−1. Bacillus sp. AK3 immobilized on FPGPs can reduce Microcystis spp. cells, chlorophyll-a content, and MC-RR by 82, 80, and 72%, respectively, within 8 days. The buoyancy of the FPGPs promotes contact between immobilized bacteria and cyanobacterial blooms floating on the water surfaces and facilitates re-collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bayat Z, Hassanshahian M, Cappello S (2015) Immobilization of microbes for bioremediation of crude oil polluted environments: a mini review. Open Microbiol J 9:48–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bollen M, Gerlich DW, Lesage B (2009) Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19:531–541

    Article  CAS  PubMed  Google Scholar 

  • Bouabidi ZB, El-Naas MH, Zhang Z (2019) Immobilization of microbial cells for the biotreatment of wastewater: a review. Environ Chem Lett 17:241–257

    Article  CAS  Google Scholar 

  • Cao Q, Steinman AD, Yao L, Xie L (2018) Effects of light, microorganisms, farming chemicals and water content on the degradation of microcystin-LR in agricultural soils. Ecotoxicol Environ Saf 156:141–147

    Article  CAS  PubMed  Google Scholar 

  • Ding N, Du W, Feng Y, Song Y, Wang C, Li C, Zheng N, Gao P, Wang R (2021) Algicidal activity of a novel indigenous bacterial strain of Paracoccus homiensis against the harmful algal bloom species, Karenia mikimotoi. Arch Microbiol 203:4821–4828

    Article  CAS  PubMed  Google Scholar 

  • Garda T, Kónya Z, Freytag C, Erdődi F, Gonda S, Vasas G, Szücs B, Kiss-Szikszai A, Vámosi G, Máthé C (2018) Allyl-isothiocyanate and microcystin-LR reveal the protein phosphatase mediated regulation of metaphase-anaphase transition in Vicia faba. Front Plant Sci 9:1823

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Wang Y, Li B, Pan G (2019) Immobilizing nitrifying bacteria with Fe2O3-CaO-SiO2 porous glass-ceramics. Int J Appl Glass Sci 10:228–234

    Article  CAS  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JM, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483

    Article  CAS  PubMed  Google Scholar 

  • Jančula D, Maršálek B (2011) Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85:1415–1422

    Article  PubMed  Google Scholar 

  • Jeong TU, Chu KH, Kim SJ, Lee J, Chae KJ, Hwang MH (2019) Evaluation of foam-glass media in a high-rate filtration process for the removal of particulate matter containing phosphorus in municipal wastewater. J Environ Manage 239:159–166

    Article  CAS  PubMed  Google Scholar 

  • Jung SW, Kang YH, Katano T, Kim BH, Cho SY, Lee JH, Kim YO, Han MS (2010) Testing addition of Pseudomonas fluorescens HYK0210-SK09 to mitigate blooms of the diatom Stephanodiscus hantzschii in small-and large-scale mesocosms. J Appl Phycol 22:409–419

    Article  Google Scholar 

  • Jung SW, Kang YH, Baek SH, Lim D, Han MS (2013) Biological control of Stephanodiscus hantzschii (Bacillariophyceae) blooms in a field mesocosm by the immobilized algicidal bacterium Pseudomonas fluorescens HYK0210-SK09. J Appl Phycol 25:41–50

    Article  Google Scholar 

  • Kang YH, Kim BR, Choi HJ, Seo JG, Kim BH, Han MS (2007) Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae). Appl Microbiol 103:1983–1994

    Article  CAS  Google Scholar 

  • Kang YH, Jung SW, Jo SH, Han MS (2011) Field assessment of the potential of algicidal bacteria against diatom blooms. Biocontrol Sci Technol 21:969–984

    Article  Google Scholar 

  • Kang YH, Park CS, Han MS (2012) Pseudomonas aeruginosa UCBPP-PA14 a useful bacterium capable of lysing Microcystis aeruginosa cells and degrading microcystins. J Appl Phycol 24:1517–1525

    Article  CAS  Google Scholar 

  • Kim BH, Sang M, Hwang SJ, Han MS (2008) In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: implications for biological bloom control. Limnol Oceanogr Meth 6:513–522

    Article  CAS  Google Scholar 

  • Krishnan A, Zhang YQ, Mou X (2018) Isolation and characterization of microcystin-degrading bacteria from Lake Erie. Bull Environ Contam Toxicol 101:617–623

    Article  CAS  PubMed  Google Scholar 

  • Lemes GA, Kist LW, Bogo MR, Yunes JS (2015) Biodegradation of [D-Leu1] microcystin-LR by a bacterium isolated from sediment of Patos Lagoon estuary, Brazil. J Venom Anim Toxins Incl Trop Dis 21:4

  • Lee C, Jeon MS, Vo TT, Park C, Choi JS, Kwon J, Roh SW, Choi YE (2018) Establishment of a new strategy against Microcystis bloom using newly isolated lytic and toxin-degrading bacteria. J Appl Phycol 30:1795–1806

    Article  CAS  Google Scholar 

  • Li Z, Geng M, Yang H (2015) Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa. Appl Microbiol Biotechnol 99: 981–990.

  • Li H, Ai H, Kang L, Sun X, He Q (2016) Simultaneous Microcystis algicidal and microcystin degrading capability by a single Acinetobacter bacterial strain. Environ Sci Technol 50:11903–11911

    Article  CAS  PubMed  Google Scholar 

  • Li J, Shimizu K, Sakharkar MK, Utsumi M, Zhang Z, Sugiura N (2011) Comparative study for the effects of variable nutrient conditions on the biodegradation of microcystin-LR and concurrent dynamics in microcystin-degrading gene abundance. Bioresour Technol 102:9509–9517

    Article  CAS  PubMed  Google Scholar 

  • Martins SCS, Martins CM, Fiúza LMCG, Santaella ST (2013) Immobilization of microbial cells: a promising tool for treatment of toxic pollutants in industrial wastewater. Afr J Biotechnol 12:4412–4418

  • Massey IY, Yang F, Ding Z, Yang S, Guo J, Al-Osman M, Kamegni RB, Zeng W (2018) Exposure routes and health effects of microcystins on animals and humans: a mini-review. Toxicon 151:156–162

    Article  CAS  PubMed  Google Scholar 

  • McLellan NL, Manderville RA (2017) Toxic mechanisms of microcystins in mammals. Toxicol Res 6:391–405

    Article  CAS  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    Article  CAS  PubMed  Google Scholar 

  • Mowe MA, Mitrovic SM, Lim RP, Furey A, Yeo DC (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74:205–224

    Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Petrella A, Petruzzelli V, Basile T, Petrella M, Boghetich G, Petruzzelli D (2010) Recycled porous glass from municipal/industrial solid wastes sorting operations as a lead ion sorbent from wastewaters. React Funct Polym 70:203–209

    Article  CAS  Google Scholar 

  • Petrella A, Spasiano D, Race M, Rizzi V, Cosma P, Liuzzi S, De Vietro N (2019) Porous waste glass for lead removal in packed bed columns and reuse in cement conglomerates. Materials 12:94

    Article  CAS  Google Scholar 

  • Peuthert A, Lawton L, Pflugmacher S (2008) In vivo influence of cyanobacterial toxins on enzyme activity and gene expression of protein phosphatases in alfalfa (Medicago sativa). Toxicon 52:84–90

    Article  CAS  PubMed  Google Scholar 

  • Ren G, He X, Wu P, He Y, Zhang Y, Tang S, Song X, He Y, Wei Y, Ding P, Yang F (2020) Biodegradation of microcystin-RR and nutrient pollutants using Sphingopyxis sp. YF1 immobilized activated carbon fibers-sodium alginate. Environ Sci Pollut Res 27:10811–10821

  • Saijo Y (1975) Methods for the quantitative determination of chlorophyll. Jap J Limnol 36:103–109

    Article  Google Scholar 

  • Saito T, Okano K, Park HD, Itayama T, Inamori Y, Neilan BA, Burns BP, Sugiura N (2003) Detection and sequencing of the microcystin LR-degrading gene, mlrA, from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229:271–276

    Article  CAS  PubMed  Google Scholar 

  • Saravanan A, Kumar PS, Varjani S, Jeevanantham S, Yaashikaa PR, Thamarai P, Abirami B, George CS (2021) A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere 271:129540

  • Scheffler M, Colombo P (eds) (2006) Cellular ceramics: structure, manufacturing, properties and applications. John Wiley & Sons, London.

  • Scholz SN, Esterhuizen-Londt M, Pflugmacher S (2017) Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible countermeasures. Toxicol Environ Chem 99:543–577

    Article  CAS  Google Scholar 

  • Shahid MJ, AL-surhanee AA, Kouadri F, Ali S, Nawaz N, Afzal M, Rizwan M, Ali B, Soliman MH, (2020) Role of microorganisms in the remediation of wastewater in floating treatment wetlands: a review. Sustainability 12:5559

    Article  CAS  Google Scholar 

  • Shao J, Jiang Y, Wang Z, Peng L, Luo S, Gu J, Li R (2014) Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: lytic characteristics and physiological responses in the cyanobacteria. Int J Environ Sci Technol 11:469–476

    Article  CAS  Google Scholar 

  • Shao J, Li R, Lepo JE, Gu JD (2013) Potential for control of harmful cyanobacterial blooms using biologically derived substances: problems and prospects. J Environ Manage 125:149–155

    Article  PubMed  Google Scholar 

  • Silva RV, De Brito J, Lye CQ, Dhir RK (2017) The role of glass waste in the production of ceramic-based products and other applications: a review. J Clean Prod 167:346–364

    Article  CAS  Google Scholar 

  • Somdee T, Thathong B, Somdee A (2016) The removal of cyanobacterial hepatotoxin [Dha 7] microcystin-LR via bioaccumulation in water lettuce (Pistia stratiotes L.). Bull Environ Contam Toxicol 96: 388–394.

  • Su JF, Liang DH, Huang TL, Wei L, Ma M, Lu J (2017) Enhancement of simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe3O4 nanoparticles. Environ Sci Pollut Res 24: 17853.

  • Su JF, Shao SC, Huang TL, Ma F, Zhang K, Wen G, Zheng SC (2016) Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa. Water Sci Technol 73:2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Hui C, Wang S, Khan RA, Zhang Q, Zhao YH (2016) Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic Fe3O4 nanoparticles and wheat bran. J Hazard Mater 301:65–73

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Lin H, Wang G, Zhang X, Zhang Q, Zhao Y (2015) Wheat bran enhances the cytotoxicity of immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa. PLoS ONE 10:e0136429

    Article  PubMed  PubMed Central  Google Scholar 

  • Tilney CL, Pokrzywinski KL, Coyne KJ, Warner ME (2014) Effects of a bacterial algicide, IRI-160AA, on dinoflagellates and the microbial community in microcosm experiments. Harmful Algae 39:210–222

    Article  CAS  Google Scholar 

  • Tsuji K, Asakawa M, Anzai Y, Sumino T, Harada KI (2006) Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere 65:117–124

    Article  CAS  PubMed  Google Scholar 

  • Visser PM, Ibelings BW, Bormans M, Huisman J (2016) Artificial mixing to control cyanobacterial blooms: a review. Aquat Ecol 50:423–441

    Article  CAS  Google Scholar 

  • Wang J, Wang C, Li Q, Shen M, Bai P, Li J, Lin Y, Gan N, Li T, Zhao J (2019) Microcystin-LR degradation and gene regulation of microcystin-degrading Novosphingobium sp. THN1 at different carbon concentrations. Front Microbiol 10:1750

  • Wang Y, Coyne KJ (2020) Immobilization of algicidal bacterium Shewanella sp. IRI-160 and its application to control harmful dinoflagellates. Harmful Algae 94: 101798.

  • Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, Su X, Cai J, Sun F (2020) Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update. Sci Total Environ 730:139034

    Article  CAS  PubMed  Google Scholar 

  • Wintermans JFGM, De Mots AS (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta 109:448–453

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Guo X, Liu X, Yang H (2017) NprR-NprX quorum-sensing system regulates the algicidal activity of Bacillus sp. strain S51107 against bloom-forming cyanobacterium Microcystis aeruginosa. Front Microbiol 8: 1968.

  • Wu P, Li G, He Y, Luo D, Li L, Guo J, Ding P, Yang F (2020) High-efficient and sustainable biodegradation of microcystin-LR using Sphingopyxis sp. YF1 immobilized Fe3O4@ chitosan. Colloids Surf B: Biointerfaces 185: 110633.

  • Xuan H, Dai X, Li J, Zhang X, Yang C, Luo F (2017) A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively. Sci Total Environ 583:214–221

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Massey IY, Guo J, Yang S, Pu Y, Zeng W, Tan H (2018) Microcystin-LR degradation utilizing a novel effective indigenous bacterial community YFMCD1 from Lake Taihu. J Toxicol Environ Health A 81:184–193

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Qiao K, Lv J, Liu Q, Nan F, Xie S, Feng J (2020) Isolation and identification of two algae-lysing bacteria against Microcystis aeruginosa. Water 12:2485

    Article  CAS  Google Scholar 

  • Yi YL, Yu XB, Zhang C, Wang GX (2015) Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A2 on Microcystis aeruginosa. Res Microbiol 166:93–101

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lu Q, Ding Q, Yin L, Pu Y (2017) A novel and native microcystin-degrading bacterium of Sphingopyxis sp. isolated from lake Taihu. Int J Environ Res Public Health 14: 1187.

  • Zhang C, Massey IY, Liu Y, Huang F, Gao R, Ding M, Xiang L, He C, Wei J, Li Y, Ge Y, Yang F (2019) Identification and characterization of a novel indigenous algicidal bacterium Chryseobacterium species against Microcystis aeruginosa. J Toxicol Environ Health A 82:845–853

    Article  CAS  PubMed  Google Scholar 

  • Żur J, Wojcieszyńska D, Guzik U (2016) Metabolic responses of bacterial cells to immobilization. Molecules 21:958

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Biology, Department of Industrial Chemistry and Science and Technology Research Institute of Chiang Mai university for supporting the scientific instruments in this study.

Funding

This research work was partially supported by the Chiang Mai University. The first author was partially financially supported by the graduate school, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. FPGPs preparation was performed by D. Boonbangkeng and W. Thiemsorn. Data analysis was performed by D. Boonbangkeng, J. Pekkoh, and K. Ruangrit. The first draft of the manuscript was written by D. Boonbangkeng and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Jeeraporn Pekkoh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 415 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonbangkeng, D., Thiemsorn, W., Ruangrit, K. et al. Promoting the simultaneous removal of Microcystis bloom and microcystin-RR by Bacillus sp. AK3 immobilized on floating porous glass pellets. J Appl Phycol 34, 1513–1525 (2022). https://doi.org/10.1007/s10811-022-02701-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02701-6

Keywords

Navigation