Skip to main content

Advertisement

Log in

Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Agriculture faces serious constraints due to drought and salinity. Soils under these pressures can result in low productivity, decreasing the farmlands area and a negative impact on the food security. In this context, the cyanobacteria (blue-green algae) can be considered important microorganisms. They are commonly found in rice fields and agricultural soils where they perform important ecological functions. Cyanobacteria improve the soil fertility and productivity of crops through the fixation of atmospheric nitrogen, phosphate solubilization and release of nutrients. Several cyanobacteria also secrete biologically active compounds such as phytohormones, amino acids, polysaccharides and vitamins which help in plant growth promotion. Studies have shown the potential of these compounds in the alleviation of abiotic stress in crop plants. Through an array of physiological, biochemical and molecular mechanisms, the cyanobacteria improve plant growth and development. Therefore, mitigation strategies using cyanobacteria are important in combating the drought and salinity stress. This article discussed the possible outcomes of employing cyanobacteria to regulate the growth and development of plants as an effective way to overcome the drought and salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abd-Alla MH, Mahmoud ALE, Issa AA (1994) Cyanobacterial biofertilizer improves growth of wheat. Phyton 34:11–18

    Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IB (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658

    Article  Google Scholar 

  • Abed RM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Adam MS (1999) The promotive effect of the cyanobacterium Nostoc muscorum on the growth of some crop plants. Acta Microbiol Pol 48:163–171

    CAS  Google Scholar 

  • Adams DG, Bergman B, Nierzwicki-Bauer SA, Duggan PS, Rai AN, Schüßler A (2013) Cyanobacterial-plant symbioses. In: Falkow S, Rosenberg E, Schleifer K, Stackebrandt E (eds) Dworkin M. The Prokaryotes Springer, Berlin, pp 359–400

    Google Scholar 

  • Adessi A, Cruz de Carvalho R, De Philippis R, Branquinho C, Marques da Silva J (2018) Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol Biochem 116:67–69

    Article  CAS  Google Scholar 

  • Ahmed NU, Park JI, Jung HJ, Yang TJ, Hur Y, Nou IS (2014) Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene 550:46–55

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  CAS  PubMed  Google Scholar 

  • Ambika HD, Krishnamurthy SR (2019) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Algol Stud 155:15–27

    Article  Google Scholar 

  • Apte SK (2001) Coping with salinity/water stress: cyanobacteria show the way. Proc Ind Natl Sci Acad B67:285–310

    Google Scholar 

  • Apte SK, Alahari A (1994) Role of alkali cations (K+ and Na+) in cyanobacterial nitrogen fixation and adaptation to salinity and osmotic stress. Indian J Biochem Biol 31:267

    CAS  Google Scholar 

  • Apte SK, Reddy BR, Thomas J (1987) Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria. Appl Environ Microbiol 53:1934–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apte SK, Thomas J (1997) Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria. Plant Soil 189:205–211

    Article  CAS  Google Scholar 

  • Arora M, Kaushik A, Rani N, Kaushik CP (2010) Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination. J Environ Biol 31:701–704

    CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Becerra-Absalón I, Muñoz-Martín MÁ, Montejano G, Mateo P (2019) Differences in the cyanobacterial community composition of biocrusts from the drylands of central Mexico. Are there endemic species? Front Microbiol 10:937

  • Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau: the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53:40–47

  • Bergman B (2002) Nostoc-Gunnera symbiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in Symbiosis. Kluwer, Dordrecht, pp 207–232

    Google Scholar 

  • Berry S, Esper B, Karandashova I, Teuber M, Elanskaya I, Rogner M, Hagemann M (2003) Potassium uptake in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 mainly depends on a Ktr-like system encoded by slr1509 (ntpJ). FEBS Lett 548:53–58

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Makandar M, Garg M, Bhatnagar M (2008) Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). J Arid Environ 72:73–83

    Article  Google Scholar 

  • Borowitzka LJ (1986) Osmoregulation in blue-green algae. Prog Phycol Res 4:243–256

    CAS  Google Scholar 

  • Borowitzka MA (1988) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-Algal Biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Themaat VLV, EVL, Schulze-Lefert P, (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Chamizo S, Cantón Y, Rodríguez-Caballero E, Domingo F (2016) Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9:1208–1221

    Article  Google Scholar 

  • Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6:49

    Article  Google Scholar 

  • Chen J, Song L, Da J, Gan N, Liu Z (2004) Effects of microcystins on the growth and the activity of the superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400

    Article  CAS  PubMed  Google Scholar 

  • Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M (2018) Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. J Appl Phycol 30:79–85

    Article  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Chua M, Erickson TE, Merritt DJ, Ooi MKJ, Muñoz-Rojas M (2019) Bio-priming seeds with cyanobacteria: effect on native plant growth and soil properties. Restor Ecol 28:S168–S176

  • Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70

    Article  CAS  Google Scholar 

  • Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A (2021) The plant endosphere world–bacterial life within plants. Environ Microbiol 23:1812–1829

    Article  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Costa JL, Lindblad P (2002) Cyanobacteria in symbiosis with cycads. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer, Dordrecht, pp 195–205

    Google Scholar 

  • Coutinho R, Seeliger U (1984) The horizontal distribution of benthic algal flora in the Patos Lagoon estuary, Brazil, in relation to salinity, substratum and wave. J Exp Marine Biol Ecol 80:247–257

  • Dadhich KS, Varma AK, Venkataraman GS (1969) The effect of Calothrix inoculation on vegetable crops. Plant Soil 31:377–379

  • Dash NP, Kaushik MS, Kumar A, Abraham G, Singh PK (2018) Toxicity of biocides to native cyanobacteria at different rice crop stages in wetland paddy field. J Appl Phycol 30:483–493

    Article  CAS  Google Scholar 

  • Dash NP, Kumar A, Kaushik MS, Abraham G, Singh PK (2017a) Nitrogenous agrochemicals inhibiting native diazotrophic cyanobacterial contribution in wetland rice ecosystem. J Appl Phycol 29:929–939

    Article  CAS  Google Scholar 

  • Dash NP, Kumar A, Kaushik MS, Abraham G, Singh PK (2017b) Agrochemicals influencing nitrogenase, biomass of N2-fixing cyanobacteria and yield of rice in wetland cultivation. Biocat Agri Biotechnol 9:28–34

    Article  Google Scholar 

  • Dash NP, Kumar A, Kaushik MS, Singh PK (2016) Cyanobacterial (unicellular and heterocystous) biofertilization to wetland rice as influenced by nitrogenous agrochemical. J Appl Phycol 28:3343–3351

    Article  CAS  Google Scholar 

  • de Caire GZ, De Cano MS, De Mule MZ, Palma RM, Colombo K (1997) Exopolysaccharides of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253

    Article  Google Scholar 

  • De Datta SK (1987) Nitrogen transformation processes in relation to improved cultural practices for lowland rice. Plant Soil 100:47–69

    Article  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotech Adv 34:1159–1179

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A (2013) Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem. Plant Soil 366:35–47

    Article  CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities. FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Di Pippo F, Ellwood NTW, Gismondi A, Bruno L, Rossi F, Magni P, De Philippis R (2013) Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications. J Appl Phycol 25:1697–1708

    Article  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dodd C, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Dubey AK, Rai AK (1995) Application of algal biofertilizers (Aulosira fertilissima Tenuis and Anabaena doliolum Bhardwaja) for sustained paddy cultivation in Northern India. Isr J Plant Sci 43:41–51

    Article  Google Scholar 

  • Dhankhar R, Mohanty A, Gulati P (2021) Microbial diversity of phyllosphere: Exploring the unexplored, In: Phytomicrobiome Interactions and Sustainable Agriculture, Amit Verma et al., (eds), John Wiley and Sons Ltd, USA, pp. 66–85.

  • Elanskaya IV, Karandashova IV, Bogachev AV, Hagemann M (2002) Functional analysis of the Na+/H+ antiporter encoding genes of the cyanobacterium Synechocystis PCC 6803. Biochemistry 67:432–440

    CAS  PubMed  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdmann N (1983) Organic osmoregulatory solutes in blue-green algae. Z Pflanzenphysiol 110:147–155

    Article  CAS  Google Scholar 

  • Evseeva NV, Kachenko OV, Denisoa AY, Burygin GL, Veselov DS, Matora LY, Shchyogolev SY (2019) Functioning of plant-bacterial associations under osmotic stress in vitro. World J Microbiol Biotechnol 35:195

    Article  CAS  PubMed  Google Scholar 

  • Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes VMC, Machado de Lima NM, Roush D, Rudgers J, Collins SL, Garcia-Pichel F (2018) Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert. Environ Microbiol 20:259–269

    Article  PubMed  Google Scholar 

  • Fernández Valiente E, Ucha A, Quesada A, Leganés F, Carreres R (2000) Contribution of N2 fixing cyanobacteria to rice production: availability of nitrogen from 15N-labelled cyanobacteria and ammonium sulphate to rice. Plant Soil 221:107–112

    Article  Google Scholar 

  • Fidor A, Konkel R, Mazur-Marzec H (2019) Bioactive peptides produced by cyanobacteria of the genus Nostoc: a review. Mar Drugs 17:561

    Article  CAS  PubMed Central  Google Scholar 

  • Flaibani A, Olsen Y, Painter TJ (1989) Polysaccharides in desert reclamation: compositions of exocellular proteoglycan complexes produced by filamentous blue-green and unicellular green edaphic algae. Carbohydr Res 190:235–248

    Article  CAS  Google Scholar 

  • Fulda S, Huckauf J, Schoor A, Hagemann M (1999) Analysis of stress responses in the cyanobacterial strains Synechococcus sp. PCC 7942, Synechocystis sp. PCC 6803, and Synechococcus sp. PCC 7418: osmolyte accumulation and stress proteins synthesis. J Plant Physiol 154:240–249

    Article  CAS  Google Scholar 

  • Gantar M, Kerby NW, Rowell P, Obreht Z, Scrimgeour R (1995a) Colonization of wheat (Triticumvulgare L.) by N2-fixing cyanobacteria. IV. Dark nitrogenase activity and effects of cyanobacteria on natural 15N abundance on plants. New Phytol 129:337–343

    Article  CAS  PubMed  Google Scholar 

  • Gantar M, Rowell P, Kerby NW, Sutherland IW (1995b) Role of extracellular polysaccharide in the colonization of wheat (Triticum vulgare L.) roots by N2-fixing cyanobacteria. Biol Fertil Soils 19:41–48

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichell F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910

    Article  Google Scholar 

  • Gayathri M, Kumar PS, Prabha AML, Muralitharan G (2015) In vitro regeneration of Arachis hypogaea L., and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515. Algal Res 7:100–105

    Article  Google Scholar 

  • Gayathri M, Shunmugum S, Thajuddin N, Muralitharan G (2017) Phytohormones and free volatile fatty acids from cyanobacterial biomass wet extract (BWE) elicit plant growth promotion. Algal Res 26:56–64

    Article  Google Scholar 

  • Gaysina LA, Saraf A, Singh P (2019) Cyanobacteria in diverse habitats. In: Mishra AK, Tiwari DN (eds) Cyanobacteria: from basic science applications. Academic Press, London, pp 1–28

    Google Scholar 

  • George P, Gupta A, Gopal M, Thomas L, Thomas GV (2013) Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J Microbiol Biotechnol 29:109–117

    Article  CAS  PubMed  Google Scholar 

  • Gheda SF, Ahmed DA (2015) Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rend Fis Accad Lincei 26:121–131

    Article  Google Scholar 

  • Glick BR, Patten CL, Holguim G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Govindasamy V, George P, Kumar M, Aher L, Raina SK, Rane J, Annapurna K, Minhas PS (2020) Multi-trait PGP rhizobacterial endophytes alleviate drought stress in a senescent genotype of sorghum [Sorghum bicolor (L.) Moench]. 3 Biotech 10:13

  • Govindasamy V, George P, Raina SK, Kumar M, Rane J, Annapurna K (2018) Plant-associated microbial interactions in the soil environment: role of endophytes in imparting abiotic stress tolerance to crops. In: Bal SK, Mukherjee J, Choudhury BU, Dhawan AK (eds) Advances in crop environment interaction. Springer, Heidelberg, pp 245–284

    Chapter  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 333–364

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gromov BV, Vepritskii AA, Titota NN, Mamkayeva KA, Alexandrova OV (1991) Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892. J Appl Phycol 3:55–59

    Article  CAS  Google Scholar 

  • Grzesik M, Romanowska-Duda Z, Kalaji HM (2017) Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55:510–521

    Article  CAS  Google Scholar 

  • Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123

    Article  CAS  PubMed  Google Scholar 

  • Han GZ (2017) Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot 68:1323–1331

    CAS  PubMed  Google Scholar 

  • Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812

    Article  CAS  Google Scholar 

  • Havaux M, Ksas B, Szewczyk A, Rumeau D, Franck F, Caffarri S, Triantaphylidès C (2009) Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress. BMC Plant Biol 9:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoiczyk E (1998) Structural and biochemical analysis of the sheath of Phormidium uncinatum. J Bacteriol 180:3923–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Hamayun M, Shah ST (2013) Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12. Curr Microbiol 67:624–630

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Hasnain S (2011) Phytostimulation and biofertilization in wheat by cyanobacteria. J Ind Microbiol Biotechnol 38:85–92

    Article  CAS  PubMed  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 8:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Issa AA, Abd-Alla MH, Ohyama T (2014) Nitrogen fixing cyanobacteria: future prospects. In: Ohyama T (ed) Advances in biology and ecology of nitrogen fixation. IntechOpen. https://doi.org/10.5772/56995

  • Jesus JM, Danko AS, Fiuza A, Borges MT (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22:6511–6525

    Article  CAS  Google Scholar 

  • Jha MN, Prasad AN (2006) Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World J Microbiol Biotech 22:73–79

    Article  CAS  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Lata DP, Kaushik BD (2007) Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur J Soil Biol 43:23–30

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Katoh H, Asthana RK, Ohmori M (2004) Gene expression in the cyanobacterium Anabaena sp. PCC 7120 under desiccation. Microb Ecol 47:164–174

    Article  CAS  PubMed  Google Scholar 

  • Katoh H, Furukawa J, Tomita-Yokotani K, Nishi Y (2012) Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim Biophys Acta 1817:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Kaushik BD (2004) Use of blue-green algae and Azolla biofertilizers in rice cultivation and their influence on soil properties. In: Jain PC (ed) Microbiology and biotechnology for sustainable development. CBS Publishers & Distributors, New Delhi, pp 166–184

    Google Scholar 

  • Kaushik BD, Venkataramanan GS (1979) Effect of algal inoculation on the yield and vitamin C content of two varieties of tomato. Plant Soil 52:135–137

    Article  CAS  Google Scholar 

  • Kaushik MS, Kumar A, Abraham G, Dash NP, Singh PK (2019) Field evaluations of agrochemical toxicity to cyanobacteria in rice field ecosystem: a review. J Appl Phycol 31:471–489

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Picchi DG, Dittmann E (2011) Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. Beilstein J Org Chem 7:1622–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch F, Klahn S, Hagemann M (2019) Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential. Front Microbiol 10:2139

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Yasuda M (2003) Seasonal changes in N2 fixation activity and N enrichment in paddy soils as affected by soil management in the northern area of Japan. Japan Agri Res Quarterly 37:105–111

    Article  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2013) Assessing the level of development and successional stages in biological soil crusts with biological indicators. Microb Ecol 66:394–403

    Article  CAS  PubMed  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C, Liu Y (2010) Effects of drought and salt stresses on man-made cyanobacterial crusts. Europ J Soil Biol 46:381–386

    Article  Google Scholar 

  • Latha A, Shanthi K, Kannan N (1992) Rock phosphate solubilization by free-living nitrogen fixing blue-green algae. In: Proceedings of National Symposium on Cyanobacterial Nitrogen Fixation. Associated Publishing Co., New Delhi, pp 415–421

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278

    Article  CAS  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA 109:14058–14062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SS, Gantzer CJ, Thompson AL, Anderson SH (2011) Polyacrylamide efficacy for reducing soil erosion and runoff as influenced by slope. J Soil Water Conserv 66:172–177

    Article  Google Scholar 

  • Li H, Zhao Q, Huang H (2019) Current status and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ 669:258–272

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shao M, Horton R (2011) Effect of polyacrylamide applications on soil hydraulic characteristics and sediment yield of sloping land. Procedia Environ Sci 11:763–773

    Article  CAS  Google Scholar 

  • Lin C, Wu J (2014) Tolerance of soil algae and cyanobacteria to drought stress. J Phycol 50:131–139

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Malfanova N, Kamilova F, Berg G (2013) Plant growth promotion by microbes. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley Blackwell, Hoboken pp 559–573

  • Luo S, Tian L, Chang C, Wang S, Zhang J, Zhou X, Li X, Tran LSP, Tian C (2018) Grass and maize vegetation systems restore saline-sodic soils in the Songnen Plain of northeast China. Land Degrad Dev 29:1107–1119

    Article  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley-Interscience, Chichester

    Google Scholar 

  • Maestre FT, Bowker MA, Cantón Y, Castillo-Monroy AP, Cortina J, Escolar C, Escuderoa A, LázarodR MI (2011) Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Malamlssa OL, Bissonnais Y, Defarge C, Trichet J (2001) Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma 101:15–30

    Article  Google Scholar 

  • Mandal B, Vlek PLG, Mandal LN (1998) Beneficial effect of blue green algae and Azolla excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils 27:329–342

    Google Scholar 

  • Manjunath M, Prasanna R, Sharma P, Nain L, Singh R (2011) Developing PGPR consortia using novel genera Providencia and Alcaligenes along with cyanobacteria for wheat. Arch Agron Soil Sci 57:873–887

    Article  CAS  Google Scholar 

  • Matsuda N, Kobayashi H, Katoh H, Ogawa T, Futatsugi L, Nakamura T, Bakker EP, Uozumi N (2004) Na1-dependent K1 uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. J Biol Chem 279:54952–54962

    Article  CAS  PubMed  Google Scholar 

  • Mazhar S, Cohen JD, Hasnain S (2013) Auxin producing non-heterocystous cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. J Basic Microbiol 53:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Meeks JC (2003) Symbiotic interactions between Nostoc punctiforme, a multicellular cyanobacterium and the hornwort Anthoceros punctatus. Symbiosis 35(1–3):55–71

    CAS  Google Scholar 

  • Mehboob A, Stal LJ, Hasnain S (2010) Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9. J Microbiol Biotechnol 20:1259–1265

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Kaushik BD (1989a) Growth promoting substances of cyanobacteria. II. Detection of amino acids, sugars and auxins. Proc Indian Natl Sci Acad B 55:499–504

    CAS  Google Scholar 

  • Misra S, Kaushik BD (1989b) Growth promoting substances of cyanobacteria. I. Vitamin and their influence on rice plant. Proc Indian Natl Sci Acad B 55:295–300

    CAS  Google Scholar 

  • Mohsen A, Dowidar S, Abo-Hamad S, Khalaf B (2013) Role of cyanobacteria in amelioration of toxic effects of copper in Trigonella foenumgracum. Aust J Crop Sci 7:1488–1493

    CAS  Google Scholar 

  • Moisander PH, McClinton E, Paerl HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442

    Article  CAS  PubMed  Google Scholar 

  • Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R (2018a) Development of the polysaccharidic matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol Fert Soils 54:27–40

    Article  Google Scholar 

  • Mugnai G, Rossi F, Felde VJMNL, Colesie C, Büdel B, Peth S, Kaplan A, De Philippis R (2018b) The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biol Biochem 127:318–328

    Article  CAS  Google Scholar 

  • Muñoz-Rojas M, Chilton A, Liyanage GS, Erickson TE, Merritt DJ, Neilan BA, Ooi MKJ (2018a) Effects of indigenous soil cyanobacteria on seed germination and seedling growth of arid species used in restoration. Plant Soil 429:91–100

    Article  CAS  Google Scholar 

  • Muñoz-Rojas M, Román JR, Roncero-Ramos B, Erickson TE, Merritt DJ, Aguila-Carricondo P, Cantón Y (2018b) Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Sci Total Environ 636:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Mustafa S, Kabir S, Shabbir U, Batool R (2019) Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 78:115–123

    Article  CAS  Google Scholar 

  • Nain L, Prasanna R, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230

    Article  CAS  Google Scholar 

  • Nanatani K, Shijuku T, Takano Y, Zulkifli L, Yamazaki T, Tominaga A, Souma S, Onai K, Morishita M, Ishiura M, Hagemann M, Suzuki I, Maruyama H, Arai F, Uozumi N (2015) Comparative analysis of kdp and ktr mutants reveals distinct roles of the potassium transporters in the model cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 197:676

  • Nayak S, Prasanna R, Dominic TK, Singh PK (2001) Floristic abundance and relative distribution of different cyanobacterial genera in rice field soil at different crop growth stages. Phykos 40:14–21

    Google Scholar 

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56

    Article  CAS  Google Scholar 

  • Nisha R, Kiran B, Kaushik A, Kaushik CP (2018) Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity. Int J Environ Sci Technol 15:571–580

    Article  CAS  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78:449–460

    Article  PubMed  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15:68–72

    Article  CAS  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682

  • Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46:861–875

    Article  Google Scholar 

  • Park CH, Li H, Jia R, Js H (2017) Combined application of cyanobacteria with soil fixing chemicals for rapid induction of biological soil crust formation. Arid Land Res Manage 31:81–93

    Article  CAS  Google Scholar 

  • Patel HM, Rastogi RP, Trivedi U, Madamwar D (2019) Cyanobacterial diversity in mat sample obtained from hypersaline desert, Rann of Kachchh. 3 Biotech 9:304

  • Paul D, Nair S (2008) Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384

    Article  CAS  PubMed  Google Scholar 

  • Peat A, Potts M (1987) The ultrastructure of immobilised desiccated cells of the cyanobacterium Nostoc commune UTEX 584. FEMS Microbiol Lett 43:223–227

    Article  Google Scholar 

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21:135–144

    Article  Google Scholar 

  • Pflugmacher S, Aulhorn M, Grimm B (2007) Influence of a cyanobacterial crude extract containing microcystin LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175:482–489

    Article  CAS  PubMed  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growthpromoting rhizobacteria on nutrient acquisition process. A Review Biol Fertil Soils 51:403–415

    Article  CAS  Google Scholar 

  • Plazinski J, Zheng Q, Taylor R, Croft L, Rolfe BG, Gunning BES (1990) DNA probes show genetic variation in cyanobacterial symbionts of the Azolla fern and a closer relationship to free-living Nostoc strains than to free living Anabaena strains. Appl Environ Microbiol 56:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Storage Soil Biol Biochem 23:313–322

    Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Shivay YS, Nain L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Article  Google Scholar 

  • Prasanna R, Hossain F, Babu S, Bidyarani N, Adak A, Verma S, Shivay YS, Nain L (2015) Prospecting cyanobacterial formulations as plant-growth-promoting agents for maize hybrids. S Afr J Plant Soil 32:199–207

    Article  Google Scholar 

  • Prasanna R, Kanchan A, Ramakrishnan B, Ranjan K, Venkatachalam S, Hossain F, Shivay YS, Krishnan P, Nain L (2016) Cyanobacteria based inoculants influence growth and yield by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Eur J Soil Biol 75:15–23

    Article  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Article  Google Scholar 

  • Rady MM, Taha SS, Kusvuran S (2018) Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions. Sci Hortic 233:61–69

    Article  Google Scholar 

  • Rai AK, Sharma NK (2006) Phosphate metabolism in the cyanobacterium Anabaena doliolum under salt stress. Curr Microbiol 52:6–12

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B-and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39:51–56

    Article  CAS  Google Scholar 

  • Reed RH, Chudek JA, Foster R, Stewart WDP (1984a) Osmotic adjustments in cyanobacteria from hypersaline environments. Arch Microbiol 138:333–337

    Article  CAS  Google Scholar 

  • Reed RH, Stewart WDP (1983) Physiological responses of Rivularia atra to salinity: osmotic adjustment in hyposaline media. New Phytol 95: 595– 603

  • Reed RH, Richardson DL, Warr SRC, Stewart WDP (1984b) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130:1–4

    CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Remus-Emsermann MNP, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA (2014) Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol 16:2329–2340

    Article  CAS  PubMed  Google Scholar 

  • Rigonato J, Alvarenga DO, Andreote FD, Franco Dias AC, Melo IS, Kent A, Fiori MF (2012) Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 80:312–322

    Article  CAS  PubMed  Google Scholar 

  • Rippka RJ, Deurelles JB, Waterburry M, Herdman Stanier RY (1979) Genetic assignments, strain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rodgers GA, Bergman B, Henriksson E, Udris M (1979) Utilization of blue-green algae as bio-fertilizers. Plant Soil 52:99–107

    Article  CAS  Google Scholar 

  • Rodríguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y, Chamizo S, Afana A, SoléBenet A (2012) Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 145–146:81–89

    Article  Google Scholar 

  • Roger PA, Kulasooriya SA (1980) Blue green algae and rice. International Rice Research Institute, Manila

    Google Scholar 

  • Roger PA, Zimmerman WJ, Lumpkin TA (1993) Microbiological management of wetland rice fields. In: Metting FB (ed) Soil microbial ecology-applications in agricultural and environmental management. Dekker, New York, pp 417–455

    Google Scholar 

  • Roger PA, Reynaud PA (1982) Free living blue green algae in tropical soils. In: Dommergues YR, Diem HG (eds) Microbiology of tropical soils and plant productivity. Martinus Nijhoff, The Hague, pp 147–168

    Chapter  Google Scholar 

  • Roman JR, Roncero-Ramos B, Chamizo S, Rodriguez-Caballero E, Canton Y (2018) Restoring soil functions by means of cyanobacteria inoculation: importance of soil conditions and species selection. Land Degrad Dev 29:3184–3193

    Article  Google Scholar 

  • Roncero-Ramos B, Román JR, Gómez-Serrano C, Cantón Y, Acién FG (2019) Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J Appl Phycol 31:2217–2230

    Article  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rossi F, De Philippis R (2016) Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka MA, Beardall J, Raven JA (eds) The Physiology of Microalgae. Springer, Cham, pp 565–590

    Chapter  Google Scholar 

  • Rossi F, Li H, Liu Y, De Philippis R (2017) Cyanobacterial inoculation (cyanobacterisation): perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth Sci Rev 171:28–43

    Article  Google Scholar 

  • Saadatnia H, Riahi H (2009) Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil Environ 55:207–212

    Article  Google Scholar 

  • Saifullah DS, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: challenges and opportunities. Sci Total Environ 625:320–335

    Article  CAS  PubMed  Google Scholar 

  • Sherer S, Ernst A, Chen TW, Boger P (1984) Rewetting of drought resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423

    Article  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Selykh IO, Semenova LR (2000) Problems of ecology and physiology of microorganisms. Dialog-MGU, Moscow, p 94

    Google Scholar 

  • Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  • Seyed HM, Ghassempour AR, Riahi H, Shariatmadari Z, Khanjir M (2012) Endogenous auxins in plant growth promoting cyanobacteria–Anabaena vaginicola and Nostoc calcicola. J Appl Phycol 25:379–386

    Google Scholar 

  • Shan X, Yan J, Xie D (2012) Comparison of phytohormone signaling mechanisms. Curr Opin Plant Biol 15:84–91

    Article  CAS  PubMed  Google Scholar 

  • Shariatmadari Z, Riahi H, Abdi M, Hashtroudi MS, Ghassempour AR (2015) Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. J Appl Phycol 27:2279–2287

    Article  Google Scholar 

  • Shariatmadari Z, Riahi H, Hashtroudi MS, Ghassempour AR, Aghashariatmadary Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nut 59:535–547

    Article  CAS  Google Scholar 

  • Singh DP, Prabha R, Yandigeri MS, Arora DK (2011) Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie Van Leeuwenhoek 100:557–568

    Article  CAS  PubMed  Google Scholar 

  • Singh DT, Rai AN, Singh HN (1985) Methylammonium (ammonium) uptake in a glutamine auxotroph of the cyanobacterium Anabaena cycadeae. FEBS Lett 186:51–53

    Article  CAS  Google Scholar 

  • Singh H, Anurag K, Apte SK (2013) High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities. Photosynth Res 118:71–81

    Article  CAS  Google Scholar 

  • Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front Microbiol 8:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. Indian Council of Agricultural Research, New Delhi. pp.175,19631602458

  • Singh S (2014) A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117(5): 1221–1244

  • Singh RP, Jha PN (2016) Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp SL-12 isolated from a salt lake. Symbiosis 69:101–111

    Article  CAS  Google Scholar 

  • Singh V, Singh DV (2015) Cyanobacteria modulated changes and its impact on bioremediation of saline-alkaline soils. Bangladesh J Bot 44:653–658

    Article  Google Scholar 

  • Sivonen K, Leikoski N, Fewer DP, Joukela J (2010) Cyanobactins-ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader M, Drews G, GoleckiJR, Weckesser J (1982) Isolation and characterization of the sheath from the cyanobacterium Chlorogloeopsis PCC 6912. J Gen Microbiol 128:267–272

  • Spiller H, Gunasekaran M (1990) Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat. Appl Microbiol Biotechnol 33:477–480

    Article  CAS  Google Scholar 

  • Srivastava AK, Bhargava P, Kumar A, Rai LC, Neilan B (2009) Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh. India Saline Systems 5:4

    Article  PubMed  CAS  Google Scholar 

  • Stal LJ (2007) Cyanobacteria. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 659–680

    Chapter  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Thajuddin N, Subramaniyan G (2005) Cyanobacterial diversity and potential applications in biotechnology. Special Section: Microbial Diversity; Curr Sci 89(1):47–57

  • Thomas J, Apte SK (1984) Sodium requirement and metabolism in nitrogen-fixing cyanobacteria. J Biosci 6:771–794

    Article  CAS  Google Scholar 

  • Tripathi RD, Dwivedi S, Shukla MK, Mishra S, Srivastava S, Singh R, Rai UN, Gupta DK (2008) Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants. Chemosphere 70:1919–1929

    Article  CAS  PubMed  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol 42:229–235

    Article  CAS  Google Scholar 

  • Tschermak-Woess E (1988) The algal partner. In: Galun M (ed) CRC handbook of lichenology. CRC Press, Boca Raton, pp 39–92

    Google Scholar 

  • Tsunekawa K, Shijuku T, Hayashimoto M, Kojima Y, Onai K, Morishita M, Ishiura M, Kuroda T, Nakamura T, Kobayashi H, Sato M, Toyooka K, Matsuoka K, Omata T, Uozumi N (2009) Identification and characterization of the Na+/H+ antiporter Nhas3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 284:16513–16521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda J, Miyamoto K, Aoki M, Hirata T, Sato T, Momotani Y (1991) Identification of jasmonic acid in Chlorella and Spirulina. Bull Osaka Prefect Ser B 43:103–108

    CAS  Google Scholar 

  • Venkatachalam S, Rajan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016) Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol 8:627–637

    Article  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizers and rice cultivation. Today and Tomorrow Printers and Publishers, New Delhi

    Google Scholar 

  • Venkataraman GS, Neelakantan S (1967) Effect of the cellular constituents of the nitrogen-fixing blue-green alga, Cylindrospermum muscicola, on the root growth of rice plants. J Gen Appl Microbiol 13:53–61

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation stategies. Ind J Agron 54:226–230

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance toabiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiolo Res 184:13–24

    Article  Google Scholar 

  • Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T (2002) Over expression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci USA 99:4109–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume: rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Peng B, Huang K (2015) The research progress of CO2 sequestration by algal bio-fertilizer in China. J CO2 Utilization 11:67–70

  • Waterbury JB (2006) The cyanobacteria-isolation, purification and identification. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp 1053–1073

  • Welker M, Dӧhren H (2006) Cyanobacterial peptides–nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

  • Whitton BA (2000) Soils and rice-fields. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 233–255

    Google Scholar 

  • Willis BF, Rodrigues BF, Harris PJC (2013) The Ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Wutipraditkul N, Waditee R, Incharoensakdi A, Hibino T, Tanaka Y, Nakamura T, Shikata M, Takabe T (2005) Halotolerant cyanobacterium Aphanothece halophytica contains Nap A-type Na+/H+ antiporters with novel ion specificity that are involved in salt tolerance at alkaline pH. Appl Environ Microbiol 71:4176–4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RK, Thagela P, Tripathi KN, Abraham G (2016) Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp. World J Microbiol Biotechnol 32:147

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Ma LA, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan lakes. Sci Rep 6:25078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wang F, Fang L, Tan T (2007) Synthesis, characterization and application of a novel chemicals and fixing agent-poly (aspartic acid) and its composites. Environ Pollut 149:125–130

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura H, Kotake T, Aohara T, Tsumuraya Y, Ikeuchi M, Ohmori M (2012) The role of extracellular polysaccharides produced by the terrestrial cyanobacterium Nostoc sp. strain HK-01 in NaCl tolerance. J Appl Phycol 24:237–243

    Article  CAS  Google Scholar 

  • Zarezadeh S, Riahi H, Shariatmadari Z, Sonboli A (2020) Effects of cyanobacterial suspensions as bio-fertilizers on growth factors and the essential oil composition of chamomile, Matricaria chamomilla L. J Appl Phycol 32:1231–1241

    Article  CAS  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Muller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y (2017) Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem 104:208–217

    Article  CAS  Google Scholar 

  • Zhang Y (2005) The microstructure and formation of biological soil crusts in their early developmental stage. Chinese Sci Bull 50:117–121

    Google Scholar 

  • Zhao J, Davis LC, Verporte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Guo Y, Fujita K, Sakai K (2004) Involvement of cAMPsignaling pathway in elicitor-induced phytoalecin accumulation in Cupressus lusitanica cell cultures. New Phytol 161:723–733

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Sakai K (2003a) Multiple signaling pathways mediate fungal elicitor induced β-thujaplicin accumulation in Cupressus lusitanica cell cultures. J Exp Bot 54:647–656

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Sakai K (2003b) Peroxidases are involved in the biosynthesis and biodegradation of β-thujaplicin in fungal elicitor-treated Cupressus lusitanica suspension cultures. New Phytol 159:719–731

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wang S, Li Y, Liu J, Zhuo Y, Chen H, Wang J, Xu L, Sun Z (2018) Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. Geoderma 321:52–60

    Article  CAS  Google Scholar 

  • Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the authorities of ICAR-Indian Agricultural Research Institute, New Delhi, India, for facilities and encouragement. Financial assistance from CSIR (HRDG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Abraham.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Both authors Sneha GR and Ravindra Kumar Yadav contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GR, S., Yadav, R.K., Chatrath, A. et al. Perspectives on the potential application of cyanobacteria in the alleviation of drought and salinity stress in crop plants. J Appl Phycol 33, 3761–3778 (2021). https://doi.org/10.1007/s10811-021-02570-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02570-5

Keywords

Navigation