Skip to main content
Log in

Culture of Chondracanthus teedei and Gracilariopsis longissima in a traditional salina from southern Spain

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The cultivation of two red macroalgal species, Chondracanthus teedei (Martens ex Roth) and Gracilariopsis longissima (S.G. Gmelin) Steentoft M, L.M. Irvine & W.F. Farnham, was assessed in a traditional salina, a system of earthen ponds used for marine salt extraction taking advantages of solar evaporation and tidal cycle. Vegetative thalli of both species were cultivated in rafts holding polypropylene ropes, from January to June 2015, when lock-gates were opened during the period of no salt production. The effects of three factors in the net growth rate were analysed: seedling density, water motion and seasonality. Water motion and seasonality showed a significant effect in the growth of both species. Seedling density only showed a significant effect in the growth of Gp. longissima, where the growth rates improved at high seedling densities. Values of tissue N were generally lower than critical quotas, suggesting that maximum growth was limited by the concentrations of dissolved nutrients. In addition, the high salinity and temperatures in late spring seemed to condition the values of net growth rate. The study suggested that macroalgal cultivation of these two valuable species could be a promising complementary activity in the integrated management of the salina during winter and early spring, when salinity is lower than 40 PSU, if nutrients in the water are increased with the semi-intensive fish cultivation and the hydrodynamic conditions along the rafts are enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87

    Article  Google Scholar 

  • Alonso-Villalobos C, Ménanteau L (2004) Métodos y técnicas de explotación salinera. In: Fernando-Olmedo NR (ed) Salinas de Andalucía. Consejeria de Medio Ambiente (Junta de Andalucía), Sevilla, pp 47–51

    Google Scholar 

  • Alonso-Villalobos C, Gracia Prieto FJ, Ménanteau L (2003) Las salinas de la Bahía de Cádiz durante la antigüedad: Visión geoarqueológica de un problema histórico. SPAL Rev Prehist Arqueol 12:317–332

    Google Scholar 

  • Alonso-Villalobos C, Ménanteau L, Rubio-García JC, Severo-Aguiló P (2004) Una visión histórica de las salinas andaluzas. In: Fernando-Olmedo NR (ed) Salinas de Andalucía. Consejería de Medio Ambiente (Junta de Andalucía), Sevilla, pp 25–46

    Google Scholar 

  • Anderson M, Gorley R, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. Primer-E Ltd, Plymouth, p 204

    Google Scholar 

  • Avila M, Piel MI, Caceres JH, Alveal K (2011) Cultivation of the red alga Chondracanthus chamissoi: sexual reproduction and seedling production in culture under controlled conditions. J Appl Phycol 23:529–536

    Article  Google Scholar 

  • Britton RH, Johnson AR (1987) An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biol Conserv 42:185–230

    Article  Google Scholar 

  • Bulboa CR, Macchiavello JE, Oliveira EC, Fonck E (2005) First attempt to cultivate the carrageenan producing seaweed Chondracanthus chamissoi (C. Agardh) Kutzing (Rhodophyta; Gigartinales) in Northern Chile. Aquac Res 36:1069–1074.

  • Bulboa C, Véliz K, Sáez F, Sepúlveda C, Vega L, Macchiavello J (2013) A new method for cultivation of the carragenophyte and edible red seaweed Chondracanthus chamissoi based on secondary attachment disc: development in outdoor tanks. Aquaculture 410-411:86–94

  • Burfeind DD, Udy JW (2009) The effects of light and nutrients on Caulerpa taxifolia and growth. Aquat Bot 90:105–109

    Article  CAS  Google Scholar 

  • Carrington E, Grace SP, Chopin T (2001) Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J Phycol 37:699–704

    Article  Google Scholar 

  • Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam KW (2006) Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J Appl Phycol 18:269–277

    Article  Google Scholar 

  • Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Creed JC, Norton TA, Kain JM (1997) Intraspecific competition in Fucus serratus germlings: the interaction of light, nutrients and density. J Exp Mar Biol Ecol 212:211–223

    Article  Google Scholar 

  • Duarte CM, Dennison WC, Orth RJW, Carruthers TJB (2008) The charisma of coastal ecosystems: addressing the imbalance. Estuar Coasts 31:233–238

    Article  Google Scholar 

  • Engkvist R, Malm T, Nilsson J (2004) Interaction between isopod grazing and wave action: a structuring force in macroalgal communities in the southern Baltic Sea. Aquat Ecol 38:403–413

    Article  Google Scholar 

  • Faucci A, Boero F (2000) Structure of an epiphytic hydroid community on Cystoseira at two sites of different wave exposure. Sci Mar 64:255–264

    Article  Google Scholar 

  • Friedlander M, Kashman Y, Weinberger F, Dawes CJ (2001) Gracilaria and its epiphytes: 4. The response of two Gracilaria species to Ulva lactuca in a bacteria-limited environment. J Appl Phycol 13:501–507

    Article  Google Scholar 

  • Ganesan M, Thiruppathi S, Jha B (2006) Mariculture of Hypnea musciformis (Wulfen) Lamouroux in south east coast of India. Aquaculture 256:201–211

    Article  Google Scholar 

  • Gerard VA, Mann KH (1979) Growth and production of Laminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. J Phycol 15:33–41

    Article  Google Scholar 

  • Guiry MD (1984) Structure, life history and hybridization of atlantic Gigartina teedii (Rhodophyta) in culture. Br Phycol J 19:37–55

    Article  Google Scholar 

  • Guiry MD, Guiry GM (2017) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway http://www.algaebase.org

    Google Scholar 

  • Hanisak MD (1983) The nitrogen relationship of marine macroalgae. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 669–730

    Google Scholar 

  • He Q, Zhang YJ, Chai Z, Wu H, Wen S, He P (2014) Gracilariopsis longissima as biofilter for an Integrated Multi-Trophic aquaculture (IMTA) system with Sciaenops ocellatus: Bioremediation efficiency and production in a recirculating system. Indian J Geo-Marine Sci 43:528–537

  • Hernandez I, Peralta G, Perez-Llorens JL, Vergara JJ, Niell FX (1997) Biomass and growth dynamics of Ulva species in Palmones River estuary. J Phycol 33:764–772

    Article  Google Scholar 

  • Hernandez I, Fernandez-Engo MA, Perez-Llorens JL, Vergara JJ (2005) Integrated outdoor culture of two estuarine macroalgae as biofilters for dissolved nutrients from Sparus aurata waste waters. J Appl Phycol 17:557–567

    Article  Google Scholar 

  • Hernández I, Pérez-Pastor A, Vergara JJ, Martínez-Aragón JF, Fernández-Engo MÁ, Pérez-Lloréns JL (2006) Studies on the biofiltration capacity of Gracilariopsis longissima: from microscale to macroscale. Aquaculture 252:43–53

    Article  Google Scholar 

  • Hernández I, Cara CL, Sánchez-García J, Macías M, Robyn L, Bermejo R (2016) Cultivos de macroalgas en el litoral gaditano: estado actual y perspectivas para su desarrollo. Algas 52:5–10

    Google Scholar 

  • Hortas F, Muñoz-Pascual G, Pérez-Hurtado A (2004) Avifauna de las salinas atlánticas. In: Fernando-Olmedo NR (ed) Salinas de Andalucía. Consejeria de Medio Ambiente (Junta de Andalucía), Sevilla, pp 223–231

    Google Scholar 

  • Huo YZ, Xu SN, Wang YY, Zhang JH, Zhang YJ, Wu WN, Chen YQ, He PM (2011) Bioremediation efficiencies of Gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay, China. J Appl Phycol 23:173–182

    Article  Google Scholar 

  • Hurd CL (2000) Water motion, marine macroalgal physiology, and production. J Phycol 36:453–472

    Article  CAS  Google Scholar 

  • Hurtado AQ, Agbayani RF, Sanares R, De Castro-Mallare MTR (2001) The seasonality and economic feasibility of cultivating Kappaphycus alvarezii in Panagatan Cays, Caluya, Antique, Philippines. Aquaculture 199:295–310

    Article  Google Scholar 

  • Israel A, Martínez-Goss M, Friedlander M (1999) Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var. liui in laboratory and outdoor cultivation. J Appl Phycol 11:543–549

    Article  Google Scholar 

  • Kain JM, Destombe C (1995) A review of the life-history, reproduction and phenology of Gracilaria. J Appl Phycol 7:269–281

    Article  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  • Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B (2010) Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Biol Ecol 391:27–34

    Article  CAS  Google Scholar 

  • Leigh EGJ, Paine RT, Quinn JF, Suchanek TH (1987) Wave energy and intertidal productivity. Proc Natl Acad Sci U S A 84:1314–1318

    Article  CAS  Google Scholar 

  • Lourenço SL, Barbarino E, Nascimento A, Freitas JNP, Diniz GS (2006) Tissue nitrogen and phosphorus in seaweeds in a tropical eutrophic environment: what a long-term study tells us. J Appl Phycol 18:389–398

    Article  Google Scholar 

  • Martínez-Aragón JF, Hernández I, Pérez-Lloréns JL, Vázquez R, Vergara JJ (2002) Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. Phosphate. J Appl Phycol 14:365–374

    Article  Google Scholar 

  • Masero JA, Pérez-Hurtado A (2001) Importance of the supratidal habitats for maintaining overwintering shorebird populations: how redshanks use tidal mudflats and adjacent saltworks in southern Europe. Condor 103:21–30

    Article  Google Scholar 

  • Molina-Montenegro MA, Muñoz AA, Badano EI, Morales BW, Fuentes KM, Cavieres LA (2005) Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Mar Ecol Prog Ser 292:173–180

    Article  Google Scholar 

  • Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Hallin C, Shpigel M, Yarsh C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391

    Article  Google Scholar 

  • Padhi S, Swain PK, Behura SK, Baidya S, Behera SK, Panigrahy MR (2011) Cultivation of Gracilaria verrucosa (Huds) Papenfuss in Chilika Lake for livelihood generation in coastal areas of Orissa State. J Appl Phycol 23:151–155

    Article  Google Scholar 

  • Parages ML, Figueroa FL, Conde-Álvarez RM, Jiménez C (2014) Phosphorylation of MAPK-like proteins in three intertidal macroalgae under stress conditions. Aquat Biol 22:213–226

    Article  Google Scholar 

  • Pereira L (2012) A review of the nutrient composition of selected edible seaweeds. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Nova Science Publishers, Inc., New York, pp 15–47

    Google Scholar 

  • Pereira L, Mesquita JF (2004) Population studies and carrageenan properties of Chondracanthus teedei var. lusitanicus (Gigartinaceae, Rhodophyta). J Appl Phycol 16:369–383

    Article  CAS  Google Scholar 

  • Pérez-Lloréns JL, Brun FG, Andría J, Vergara JJ (2004) Seasonal and tidal variability of environmental carbon related physico-chemical variables and inorganic C acquisition in Gracilariopsis longissima and Enteromorpha intestinalis from Los Toruños salt marsh (Cádiz Bay, Spain). J Exp Mar Biol Ecol 304:183–201

    Article  Google Scholar 

  • Pérez-Lloréns JL, Hernández I, Vergara JJ, Brun FG, León Á (2016) ¿Las algas se comen? Un periplo por la biología, la historia, las curiosidades y la gastronomía. Servicio de Publicaciones de la Universidad de Cádiz, Cádiz, pp 336

    Google Scholar 

  • Peteiro C, Freire Ó (2011) Effect of water motion on the cultivation of the commercial seaweed Undaria pinnatifida in a coastal bay of Galicia, Northwest Spain. Aquaculture 314:269–276

    Article  Google Scholar 

  • Peteiro C, Freire Ó (2013) Biomass yield and morphological features of the seaweed Saccharina latissima cultivated at two different sites in a coastal bay in the Atlantic coast of Spain. J Appl Phycol 25:205–213

    Article  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org/

    Google Scholar 

  • Rothman MD, Anderson RJ, Boothroyd CJT, Kemp FA, Bolton JJ (2009) The gracilarioids in South Africa: long-term monitoring of a declining resource. J Appl Phycol 21:47–53

    Article  Google Scholar 

  • Ryder E, Nelson SG, McKeon C, Glenn EP, Fitzsimmons K, Napolean S (2004) Effect of water motion on the cultivation of the economic seaweed Gracilaria parvispora (Rhodophyta) on Molokai, Hawaii. Aquaculture 238:207–219

    Article  Google Scholar 

  • Sadoul N, Walmsley J, Charpentier B (1998) Salinas and nature conservation. In: Crivelli AJ, Jalbert J (eds) Conservation of Mediterranean wetlands n°9. Station Biologique de la Tour du Valat, Arles, p 99

    Google Scholar 

  • Sato Y, Yamaguchi M, Hirano T, Fukunishi N, Abe T, Kawano S (2017) Effect of water velocity on Undaria pinnatifida and Saccharina japonica growth in a novel tank system designed for macroalgae cultivation. J Appl Phycol 29:1429–1436

    Article  CAS  Google Scholar 

  • Shukla R, Kumar M, Chakraborty S, Gupta R, Kumar S, Sahoo D, Kuhad RC (2016) Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresour Technol 220:584–589

    Article  CAS  Google Scholar 

  • Stabili L, Acquaviva MI, Biandolino F, Cavallo RA, de Pascali SA, Fanizzi FP, Narracci M, Petrocelli A, Cecere E (2012) The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): a potential resource for biotechnological purposes? Nat Biotechnol 29:443–450

    CAS  Google Scholar 

  • Steentoft M, Irvine LM, Farnham WF (1995) Two terete species of Gracilaria and Gracilariopsis (Gracilariales, Rhodophyta) in Britain. Phycologia 34:113–127

    Article  Google Scholar 

  • Stevens CL, Hurd CL (1997) Boundary-layers around bladed aquatic macrophytes. Hydrobiologia 346:119–128

    Article  Google Scholar 

  • Torrejón J (1994) El área portuaria de la Bahía de Cádiz. Tres mil años de puerto. In: CEHOPU (ed) Puertos Españoles En La Historia. Ministerio de Obras Públicas, Transportes y Medio Ambiente, Madrid, pp 117–145

  • Torrejón J (1997) Las salinas de la bahía de Cádiz. In: Malpica-Cuello A, González-Alcantud JA (eds) Congreso Internacional de La Comisión de Historia de La Sal. Centro de Investigaciones Etnológicas Angel Ganivet (Junta de Andalucía), Granada, pp 169–194

    Google Scholar 

  • Vásquez JA, Alonso-Vega JM (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277

    Article  Google Scholar 

  • Villazán B, Salo T, Brun FG, Vergara JJ, Pedersen MF (2015) High ammonium availability amplifies the adverse effect of low salinity on eelgrass Zostera marina. Mar Ecol Prog Ser 536:149–162

    Article  Google Scholar 

  • Wakibia JG, Anderson RJ, Keats DW (2001) Growth rates and agar properties of three gracilarioids in suspended open-water cultivation in St . Helena Bay , South Africa. J Appl Phycol 13:195–207

    Article  CAS  Google Scholar 

  • Wheeler PA, Björnsäter BR (1992) Seasonal fluctuations in tissue nitrogen, phosphorus, and N:P for five macroalgal species common to the Pacific northwest coast. J Phycol 28:1–6

    Article  CAS  Google Scholar 

  • Yang MY, Macaya EC, Kim MS (2015) Molecular evidence for verifying the distribution of Chondracanthus chamissoi and C. teedei (Gigartinaceae, Rhodophyta). Bot Mar 58:103–113

    Google Scholar 

  • Zhou W, Sui Z, Wang J, Chang L (2013) An orthogonal design for optimization of growth conditions for all life history stages of Gracilariopsis lemaneiformis (Rhodophyta). Aquaculture 392–395:98–105

    Article  Google Scholar 

  • Zinoun M, Cosson J, Deslandes E (1993) Influence of culture conditions on growth and physicochemical properties of carrageenans in Gigartina teedii (Rhodophyceae—Gigartinales). Bot Mar 36:131–136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ricardo Bermejo was supported by a postdoctoral fellowship from the University of Cádiz (Contrato Puente, Plan Propio de Investigación 2014). This version of the manuscript was greatly improved by suggestions provided by two referees. We thank R. Love and S. Molina for field assistance.

Funding

This study was funded by Project RNM 1235 of the Consejería de Economía y Conocimiento of the Junta de Andalucía (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Bermejo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermejo, R., Macías, M., Cara, C.L. et al. Culture of Chondracanthus teedei and Gracilariopsis longissima in a traditional salina from southern Spain. J Appl Phycol 31, 561–573 (2019). https://doi.org/10.1007/s10811-018-1516-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1516-0

Keywords

Navigation