Skip to main content
Log in

Diurnal carbon dioxide exchange rates of Saccharina latissima and Laminaria digitata as affected by salinity levels in Norwegian fjords

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The Norwegian fjords are strongly influenced by freshwater runoff from the mountain regions as a result of high precipitation. The macroalgae growing in the fjords may therefore be frequently exposed to low salinity levels. This may affect the potential for cultivating kelp in the fjords. In the present study, the sensitivity to salinity levels of 10, 16, 24 or 34‰ was studied by measuring the carbon dioxide exchange rate (CER) in young sporophytes of Saccharina latissima and Laminaria digitata continuously over several days. A positive CER was found down to the freezing point of −2 °C as well as a positive CER during darkness depending on the irradiance level of the previous day. Decreasing the salinity from 34 to 24, 16 or 10‰ reduced the daily CO2 uptake by 50, 85 or 100%, respectively, in S. latissima. The negative effect of decreasing salinity to 10‰ was irreversible. In L. digitata, the daily CO2 uptake was reduced by 20, 30 or 40% by decreasing the salinity from 34‰ to the respective salinity levels. The reduction in the CER at 10‰ was fully reversible. These results were consistent with the observations in a fjord dominated by brackish water where L. digitata was abundant and S. latissima absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aure J, Strand Ø, Erga SR, Strohmeier T (2007) Primary production enhancement by artificial upwelling in a western Norwegian fjord. Mar Ecol Prog Ser 352:39–52

    Article  CAS  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Broch OJ, Slagstad D (2012) Modelling seasonal growth and composition of the kelp Saccharina latissima. J Appl Phycol 24:759–776

    Article  CAS  Google Scholar 

  • Cabello-Pasini A, Alberte RS (2001) Enzymatic regulation of photosynthetic and light-independent carbon fixation in Laminaria setchellii (Phaeophya), Ulva lactuca (Chlorophyta) and Iridaea cordata (Rhodophyta). Rev Chil Hist Nat 74:229–236

    Article  Google Scholar 

  • Davison IR, Reed RH (1985a) Osmotic adjustment in Laminaria digitata (Phaeophya) with particular reference to seasonal changes in internal solute concentrations. J Phycol 21:41–50

    Article  Google Scholar 

  • Davison IR, Reed RH (1985b) The physiological significance of mannitol accumulation in brown algae: the role of mannitol as a compatible solute. Phycologia 24:449–457

    Article  CAS  Google Scholar 

  • Erga SR, Ssebiyonga N, Frette Ø, Hamre B, Aure J, Strand Ø (2012) Dynamics of phytoplankton distribution and photosynthetic capacity in a western Norwegian fjord during coastal upwelling: effects on optical properties. Estuar Coast Shelf Sci 97:91–103

    Article  CAS  Google Scholar 

  • Gerard VA, DuBois K, Greene R (1987) Growth responses of two Laminaria saccharina populations to environmental variations. Hydrobiologia 151/152:229–232

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Edwards MD, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    Article  CAS  PubMed  Google Scholar 

  • Jorde I, Klavestad N (1963) The natural history of the Hardangerfjord. 4. The benthonic algal vegetation. Sarsia 9:1–99

    Article  Google Scholar 

  • Kaiser E, Morales A, Harbinson J, Kromdijk J, Heuvelink E, Marcelis LFM (2015) Dynamic photosynthesis in different environmental conditions. J Exp Bot 66:2415–2426

    Article  CAS  PubMed  Google Scholar 

  • Karsten U (2007) Salinity tolerance of artic kelps from Spitsbergen. Phycol Res 55:257–262

    Article  Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol 41:21–53

    Article  CAS  Google Scholar 

  • Körner O, Van’t Ooster A, Hulsbos M (2007) Design and performance of a measuring system for CO2 exchange of greenhouse crop at different light levels. Scientia Hort 97:219–228

    Google Scholar 

  • Liland NS, Rosenlund G, Berntssen MHG, Brattelid T, Madsen L, Torstensen BE (2013) Net production of Atlantic salmon (FIFO, fish in fish out < 1) with dietary plant protein and vegetable oils. Aquac Nutr 19:289–300

    Article  CAS  Google Scholar 

  • Lüning K, Mortensen LM (2015) European aquaculture of sugar kelp (Saccharina latissima) for food industries: iodine content and epiphytic animals as major problems. Bot Mar 58:449–455

    Article  Google Scholar 

  • Marinho GS, Holdt SL, Birkeland MJ, Angelidaki I (2015) Commercial cultivation and bioremediation potential of sugar kelp, Saccharina latisima, in Danish waters. J Appl Phycol 27:1963–1973

    Article  CAS  Google Scholar 

  • Møller Nielsen M, Manns D, D’Este M, Krause-Jensen D, Bo Rasmussen M, Mørk Larsen M, Alvardo-Morales M, Angelidaki I, Bruhn A (2016a) Variation in biochemical composition of Saccharina latissima and Laminaria digitata along an estuarine salinity gradient in inner Danish waters. Algal Res 13:235–245

    Article  Google Scholar 

  • Møller Nielsen M, Paulino C, Neiva J, Krause-Jensen D, Bruhn A, Serrao EA (2016b) Genetic diversity of Saccharina latissima (Phaeophyceae) along a salinity gradient in the North Sea-Baltic Sea transition zone. J Phycol 52:523–531

    Article  PubMed  Google Scholar 

  • Mortensen LM (1995) Diurnal carbon dioxide exchange rates of greenhouse roses under artificial light as compared with daylight conditions in summer. Acta Agr Scand B 45:148–152

    Google Scholar 

  • Mortensen LM (2014) The effect of photosynthetic active radiation and temperature on growth and flowering of ten flowering pot plant species. Am J Plant Sci 5:1907–1917

    Article  Google Scholar 

  • Mortensen LM, Gislerød HR (2012) The effect of high CO2 concentrations on diurnal photosynthesis at high daytime temperatures in small stands of cut roses. Eur J Hort Sci 77:163–169

    CAS  Google Scholar 

  • Ralph PJ (1998) Photosynthetic responses of Halophila ovalis (R. Br.) Hook. f. to osmotic stress. J Exp Mar Biol Ecol 227:203–220

    Article  CAS  Google Scholar 

  • Scherner F, Ventura R, Barufi JB, Horta PA (2013) Salinity critical threshold values for photosynthesis of two cosmopolitan seaweed species: providing baselines for potential shifts on seaweed. Mar Envir Res 91:14–25

    Article  CAS  Google Scholar 

  • Schiener P, Black KD, Stanley MS, Green DH (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J Appl Phycol 27:363–373

    Article  CAS  Google Scholar 

  • Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. Technikfolgenabschätzung 21, Jg. Heft 1:23–37

    Google Scholar 

  • Skjermo J, Aasen IM, Arff J, Broch OJ, Carvajal A, Christie H, Forbord S, Olsen Y, Reitan KI, Rustad T, Sandquist J, Solbakken R, Steinhovden KB, Wittgens B, Wolff R, Handå A, (2014). A new Norwegian bioeconomy based on cultivation and processing of seaweeds: opportunities and R&D needs. SINTEF report A25981: 46 p. (www.sintef.no)

  • Sogn Andersen GS, Foldager Pedersen M, Nielsen SL (2013) Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J Phycol 49:689–700

    Article  Google Scholar 

  • Spurkland T, Iken K (2011) Salinity and irradiance effects on growth and maximum photosynthetic quantum yield in subarctic Saccharina latissima (Laminariales, Laminariaceae). Bot Mar 54:355–365

    Article  CAS  Google Scholar 

  • Uni Research (2015) Marin overvåking Rogaland. SAM e-rapport nr: 6-2015, 177 p. https://uni.no/media/manual_upload/SAM_6-2015.pdf

  • Wang X, Broch OJ, Forbord S, Handå A, Skjermo J, Reitan KI, Vadstein O, Olsen Y (2014) Assimilation of inorganic nutrients from salmon (Salmon salar) farming by the macroalgae (Saccharina latissimi) in an exposed coastal environment: implications for integrated multi-trophic aquaculture. J Appl Phycol 26:1869–1878

    Article  CAS  Google Scholar 

  • Yancey P (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Emer. Klaus Lüning for his valuable comments on the manuscript, and Rogaland Municipality, Ryfylkefondet, Lerøy Seafood Group, Ewos Innovation and Blue Planet for their valuable support in connection with the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiv M. Mortensen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortensen, L.M. Diurnal carbon dioxide exchange rates of Saccharina latissima and Laminaria digitata as affected by salinity levels in Norwegian fjords. J Appl Phycol 29, 3067–3075 (2017). https://doi.org/10.1007/s10811-017-1183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1183-6

Keywords

Navigation