Skip to main content

Advertisement

Log in

Bioprocess engineering of microalgae to optimize lipid production through nutrient management

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae have been used commercially as a feedstock for the production of high-value compounds, pigments, cosmetics, and nutritional supplements. In addition, because of their rapid growth rates, high photosynthetic efficiency, and high lipid and protein content, commodity products including biodiesel, feed supplements, and polyunsaturated fatty acids derived from algal biomass are of current interest. Since microalgae lack non-photosynthetic structures and float in water, they do not need massive amounts of structural cellulose found in land plants. Thus, under optimal culture conditions, some oleaginous species can allocate up to 70 % of their biomass to lipids. Lipid production and its regulation in microalgae are species-specific and influenced by environmental conditions. Various strategies have been developed to improve lipid productivity and fatty acid composition to meet specific production goals. Manipulation of physiochemical parameters, trophic modes, and nutrient levels, known as process engineering, is a simple approach that leads to desired alterations in the biochemical composition of algal biomass, including lipid quantity and quality. In this paper, we review the effects of manipulating biochemical parameters such as necessary nutrients (C, N, P, S, Fe, and Si), NaCl concentration, and pH of culture medium to optimize lipid content and profile in some algae strains with commercial potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El Baky HH, El-Baroty GS, Bouaid A, Martinez M, Aracil J (2012) Enhancement of lipid accumulation in Scenedesmus obliquus by Optimizing CO2 and Fe3+ levels for biodiesel production. Bioresour Technol 119:429–432

    Article  CAS  PubMed  Google Scholar 

  • Al-Hasan RH, Ghannoum MA, Sallal A-K, Abu-elteen KH, Radwan SS (1987) Correlative changes of growth, pigmentation and lipid composition of Dunaliella salina in response to halostress. Microbiology 133:2607–2616

    Article  CAS  Google Scholar 

  • Al-Hasan R, Ali A, Ka’wash H, Radwan S (1990) Effect of salinity on the lipid and fatty acid composition of the halophyte Navicula sp.: potential in mariculture. J Appl Phycol 2:215–222

    Article  Google Scholar 

  • Alonso DL, Belarbi E-H, Fernández-Sevilla JM, Rodríguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    Article  CAS  PubMed  Google Scholar 

  • Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070–2093

    Article  Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker KM, Gobler CJ, Collier JL (2009) Urease gene sequences from algae and heterotrophic bacteria in axenic and nonaxenic phytoplankton cultures. J Phycol 45:625–634

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38(Supplement):S475–S479

    Article  CAS  Google Scholar 

  • Benemann JR (2013) Microalgae for biofuels and animal feeds. Energies 6:5869. doi:10.3390/en6115869

    Article  CAS  Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Final report US DOE., Pittsburgh, p 1–201

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Article  CAS  Google Scholar 

  • Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. M-M24 and Tetraselmis suecica M-M33. Bioresour Technol 114:567–572

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (2013a) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Borowitzka MA (2013b) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652

    Chapter  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Cheirsilp B, Torpee S (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol 110:510–516

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuel 23:4166–4173

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microbiol Technol 34:461–465

    Article  CAS  Google Scholar 

  • Chu F-F, Chu P-N, Cai P-J, Li W-W, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346

    Article  CAS  PubMed  Google Scholar 

  • Chu F-F, Chu P-N, Shen X-F, Lam PKS, Zeng RJ (2014) Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour Technol 152:241–246

    Article  CAS  PubMed  Google Scholar 

  • Chungjatupornchai W, Kitraksa P, Fa-aroonsawat S (2016) Stable nuclear transformation of the oleaginous microalga Neochloris oleoabundans by electroporation. J Appl Phycol 28:191–199

    Article  CAS  Google Scholar 

  • Collyer DM, Fogg GE (1955) Studies on fat accumulation by algae. J Exp Bot 6:256–275

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  PubMed  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665

    Article  CAS  PubMed  Google Scholar 

  • Day JD, Edwards AP, Rodgers GA (1991) Development of an industrial-scale process for the heterotrophic production of a micro-algal mollusc feed. Bioresour Technol 38:245–249

    Article  Google Scholar 

  • Deng X, Gu B, Hu X, Guo J, Fei X (2011) Photosynthetic efficiency and lipid accumulation are affected by the concentration of carbon in microalgae Micractinium pusillum Y-002. Afr J Biotechnol 10:11600–11610

    CAS  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–203

    Article  CAS  Google Scholar 

  • Duan X, Ren GY, Liu LL, Zhu WX (2012) Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. Afr J Biotechnol 11:7072–7078

    CAS  Google Scholar 

  • Dyhrman ST (2016) Nutrients and their acquisition: phosphorus physiology in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 155–183

    Chapter  Google Scholar 

  • Elenkov I, Stefanov K, Dimitrova-Konaklieva S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44

    Article  CAS  Google Scholar 

  • Elrifi IR, Holmes JJ, Weger HG, Mayo WP, Turpin DH (1988) RuBP limitation of photosynthetic carbon fixation during NH3 assimilation: interactions between photosynthesis, respiration, and ammonium assimilation in n-limited green algae. Plant Physiol 87:395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Growth of juvenile Ostrea edulis L. fed Chaetoceros gracilis Schütt of varied chemical composition. J Exp Mar Biol Ecol 96:15–26

    Article  CAS  Google Scholar 

  • Fan J, Cui Y, Wan M, Wang W, Li Y (2014) Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol Biofuels 7:1–14

    Article  CAS  Google Scholar 

  • Feng D, Chen Z, Xue S, Zhang W (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102:6710–6716

    Article  CAS  PubMed  Google Scholar 

  • Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fidalgo J, Cid A, Abalde J, Herrero C (1995) Culture of the marine diatom Phaeodactylum tricornutum with different nitrogen sources: growth, nutrient conversion and biochemical composition. Cah Biol Mar 36:165–173

    Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116

    Article  CAS  Google Scholar 

  • Flynn KJ, Butler I (1986) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 34:281–304

    Article  CAS  Google Scholar 

  • Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14

    Article  CAS  Google Scholar 

  • Gardner R, Peters P, Peyton B, Cooksey KE (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 23:1005–1016

    Article  CAS  Google Scholar 

  • Gardner RD, Cooksey KE, Mus F, Macur R, Moll K, Eustance E, Carlson RP, Gerlach R, Fields MW, Peyton BM (2012) Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum. J Appl Phycol 24:1311–1320

    Article  CAS  Google Scholar 

  • Gatenby C, Orcutt D, Kreeger D, Parker B, Jones V, Neves R (2003) Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15:1–11

    Article  CAS  Google Scholar 

  • Giordano M, Prioretti L (2016) Sulphur and algae: metabolism, ecology and evolution. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 185–209

    Chapter  Google Scholar 

  • Giordano M, Raven JA (2014) Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gladue R, Maxey J (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141

    Article  Google Scholar 

  • González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661

    Article  PubMed  CAS  Google Scholar 

  • Griffiths M, Harrison SL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Harwati TU, Willke T, Vorlop KD (2012) Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. Bioresour Technol 121:54–60

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253

    Article  CAS  Google Scholar 

  • Herrero C, Cid A, Fabregas J, Abalde J (1991) Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media. Aquac Eng 10:99–110

    Article  Google Scholar 

  • Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Huang Z, Wen W, Yan J (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J Appl Phycol 25:129–137

    Article  CAS  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol 45:577–607

    Article  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microbiol Technol 27:631–635

    Article  CAS  Google Scholar 

  • Iskandarov U, Sitnik S, Shtaida N, Didi-Cohen S, Leu S, Khozin-Goldberg I, Cohen Z, Boussiba S (2016) Cloning and characterization of a GPAT-like gene from the microalga Lobosphaera incisa (Trebouxiophyceae): overexpression in Chlamydomonas reinhardtii enhances TAG production. J Appl Phycol 28:907–919

    Article  CAS  Google Scholar 

  • Jakobsen A, Aasen I, Josefsen K, Strøm A (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  PubMed  Google Scholar 

  • Kim G, Bae J, Lee K (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour Technol 205:274–279

    Article  CAS  PubMed  Google Scholar 

  • Kirroliaa A, Bishnoia N, Singhb N (2011) Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. J Algal Biomass Utln 2:28–34

    Google Scholar 

  • Knothe G (2011) Will biodiesel derived from algal oils live up to its promise? A fuel property assessment. Lipid Technol 23:247–249

    Article  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388

    Article  CAS  Google Scholar 

  • Kumar A et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556

    Article  CAS  Google Scholar 

  • Leftley JW, Syrett PJ (1973) Urease and ATP: urea amidolyase activity in unicellular algae. Microbiology 77:109–115

    CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  • Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V, Čížková M, Brányiková I, Vítová M (2013) The microalga Parachlorella kessleri––A novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H (2014) Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol 174:24–32

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Beardall J, Heraud P (2006) Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J Photochem Photobiol B 82:161–172

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Gu N, Li G, Lin J, Huang L, Tan LL (2012) Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179. Bioresour Technol 111:353–359

  • Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Huang Z, Li P, Xia J, Chen B (2012) Formation of triacylglycerol in Nitzschia closterium f. minutissima under nitrogen limitation and possible physiological and biochemical mechanisms. J Exp Mar Biol Ecol 418–419:24–29

    Article  CAS  Google Scholar 

  • Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28:742–746

    Article  CAS  PubMed  Google Scholar 

  • Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    Article  CAS  PubMed  Google Scholar 

  • Lyon S, Ahmadzadeh H, Murry M (2015) Algae-based wastewater treatment for biofuel production: processes, species, and extraction methods. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 95–115

    Google Scholar 

  • Mansour MMF (2013) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10

    Article  CAS  Google Scholar 

  • Mansour M, Salama KA, Allam HH (2015) Role of the plasma membrane in saline conditions: lipids and proteins. Bot Rev:1–36

  • Marchetti A, Maldonado MT (2016) Iron. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 233–279

    Chapter  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Moheimani NR (2012) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398

    Article  CAS  Google Scholar 

  • Moheimani N (2013) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp. (Chlorophyta) in bag photobioreactors. J Appl Phycol 25:167–176

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2011) Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures. Appl Microbiol Biotechnol 90:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Moheimani N, Parlevliet D, McHenry M, Bahri P, de Boer K (2015) Past, present and future of microalgae cultivation developments. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 1–18

    Google Scholar 

  • Moreira D, Pires JCM (2016) Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Bioresour Technol. doi:10.1016/j.biortech.2016.03.060

    Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta - Bioenergy 1767:414–421

    Article  CAS  Google Scholar 

  • Negi S, Barry AN, Friedland N, Sudasinghe N, Subramanian S, Pieris S, Holguin FO, Dungan B, Schaub T, Sayre R (2016) Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. J Appl Phycol 28:803–812

    Article  CAS  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264

    Article  CAS  Google Scholar 

  • Nigam S, Rai MP, Sharma R (2011) Effect of nitrogen on growth and lipid content of Chlorella pyrenoidosa. Am J Biochem Biotechnol 7:126–131

    Article  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta - Bioenergy 1757:742–749

    Article  CAS  Google Scholar 

  • Ogbonna J, McHenry M (2015) Culture systems incorporating heterotrophic metabolism for biodiesel oil production by microalgae. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 63–74

    Google Scholar 

  • Ogbonna J, Moheimani N (2015) Potentials of exploiting heterotrophic metabolism for biodiesel oil production by microalgae. In: Moheimani NR, McHenry MP, de Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Cham, pp 45–61

    Google Scholar 

  • Park K, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2012) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24:339–348

    Article  CAS  Google Scholar 

  • Peeler TC, Stephenson MB, Einspahr KJ, Thompson GA (1989) Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity. Plant Physiol 89:970–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pazos J-V, Fernández-Izquierdo P (2011) Synthesis of neutral lipids in Chlorella sp. under different light and carbonate conditions Ciencia. Tecnología y Futuro 4:47–58

  • Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Popovich CA, Damiani C, Constenla D, Martínez AM, Freije H, Giovanardi M, Pancaldi S, Leonardi PI (2012) Neochloris oleoabundans grown in enriched natural seawater for biodiesel feedstock: Evaluation of its growth and biochemical composition. Bioresour Technol 114:287–293

    Article  CAS  PubMed  Google Scholar 

  • Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha MA, Thajuddin N (2012) Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production. Biomass Bioenergy 37:60–66

    Article  CAS  Google Scholar 

  • Procházková G, Brányiková I, Zachleder V, Brányik T (2014) Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol 26:1359–1377

    Article  CAS  Google Scholar 

  • Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR (2014) CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 6(Part A):78–85

    Article  Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Gimpel JA, Tran M, Hannon MJ, Miyake-Stoner SJ, Specht EA, Mayfield SP (2013) Genetic engineering to improve algal biofuels production. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 99–113

    Chapter  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans 30:1047–1049

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 143–154

    Chapter  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Phil Trns Roy Soc B 367:493–507

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Ren H-Y, Liu B-F, Ma C, Zhao L, Ren N-Q (2013) A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnol Biofuels 6:143–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  CAS  Google Scholar 

  • Řezanka T, Lukavský J, Nedbalová L, Sigler K (2011) Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus. Phytochemistry 72:2342–2351

    Article  PubMed  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528

    Article  CAS  PubMed  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J Phycol 26:393–399

    Article  CAS  Google Scholar 

  • Roopnarain A, Gray VM, Sym SD (2014) Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Bioresour Technol 156:408–411

    Article  CAS  PubMed  Google Scholar 

  • Rueter JG, Ohki K, Fujita Y (1990) The effect of iron nutrition on photosynthesis and nitrogen fixation in cultures of Trichodesmium (Cyanophyceae). J Phycol 26:30–35

    Article  CAS  Google Scholar 

  • Santos AM, Janssen M, Lamers PP, Evers WAC, Wijffels RH (2012) Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions. Bioresour Technol 104:593–599

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28:912–914

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shi X-M, Liu H-J, Zhang X-W, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347

    Article  CAS  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444

    Article  CAS  Google Scholar 

  • Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 55:95–100

    Article  CAS  Google Scholar 

  • Spoehr HA, Milner HW (1949) The chemical composition of chlorella; effect of environmental conditions. Plant Physiol 24:120–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Syrett PJ, Morris I (1963) The inhibition of nitrate assimilation by ammonium in Chlorella. Biochim Biophys Acta - Enzymological Subj 67:566–575

    Article  CAS  Google Scholar 

  • Taguchi S, Hirata JA, Laws EA (1987) Silicate deficiency and lipid synthesis of marine diatoms. J Phycol 23:260–267

    Article  CAS  Google Scholar 

  • Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  • Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Johns M (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19

    Article  CAS  Google Scholar 

  • Tanadul O, VanderGheynst JS, Beckles DM, Powell ALT, Labavitch JM (2014) The impact of elevated CO2 concentration on the quality of algal starch as a potential biofuel feedstock. Biotechnol Bioeng 111:1323–1331

  • Taziki M, Ahmadzadeh H, Murry MA, Lyon SR (2015) Nitrate and nitrite removal from wastewater using algae. Curr Biotechnol 4:1–15

    Google Scholar 

  • Thacker A, Syrett PJ (1972) The assimilation of nitrate and ammonium by Chlamydomonas reinhardii. New Phytol 71:423–433

    Article  CAS  Google Scholar 

  • Tsuzuki M, Ohnuma E, Sato N, Takaku T, Kawaguchi A (1990) Effects of CO2 concentration during growth on fatty acid composition in microalgae. Plant Physiol 93:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry 30:2919–2925

    Article  CAS  Google Scholar 

  • Vítová M, Bišová K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218

    Article  PubMed  Google Scholar 

  • Volkman JK, Brown MR (2005) Nutritional value of microalgae and applications. In: Subba Rao DV (ed) Algal cultures, analogues of blooms and applications. vol 1. Science Publishers Enfield, USA, pp 407–457

    Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Fu R, Pei G (2012) A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res 6:1041–1047

    Google Scholar 

  • Wen ZY, Chen F (2000) Heterotrophic production of eicosapentaenoid acid by the diatom Nitzschia laevis: Effects of silicate and glucose. J Ind Microbiol Biotechnol 25:218

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2001a) Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng 75:159–169

    Article  CAS  PubMed  Google Scholar 

  • Wen Z-Y, Chen F (2001b) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme Microbiol Technol 29:341–347

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  PubMed  Google Scholar 

  • White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165

    Article  CAS  Google Scholar 

  • Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Wilhelm C, Büchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124

    Article  CAS  PubMed  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293

    Article  CAS  PubMed  Google Scholar 

  • Xu X-Q, Beardall J (1997) Effect of salinity on fatty acid composition of a green microalga from an Antarctic hypersaline lake. Phytochemistry 45:655–658

    Article  CAS  Google Scholar 

  • Yao S, Brandt A, Egsgaard H, Gjermansen C (2012) Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol Biochem 61:71–79

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Yu J, Jiang F, Zhang X, Tan T (2012) The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresour Technol 114:466–471

    Article  CAS  PubMed  Google Scholar 

  • Zhila NO, Kalacheva GS, Volova TG (2011) Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23:47–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from ATF Committee and Ferdowsi University of Mashhad (grant numbers of 3/29836 and 3/27412) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ahmadzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lari, Z., Moradi-kheibari, N., Ahmadzadeh, H. et al. Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol 28, 3235–3250 (2016). https://doi.org/10.1007/s10811-016-0884-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0884-6

Keywords

Navigation