Skip to main content

Advertisement

Log in

Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

While harmful algal blooms (HABs) have become a threat to fisheries, environmental and public health, and economies worldwide, most of the approaches under investigations for prevention, control, and mitigation (PCM) of HABs are limited by high cost and possible secondary pollution. This study reports our laboratory and field experiments demonstrating effective growth-inhibiting effects of the widely cultivated seaweed Gracilaria lemaneiformis on phytoplankton possibly forming HABs. Laboratory experiments demonstrated significant growth-inhibiting effects of fresh G. lemaneiformis thalli in a dose-response manner on four of six test microalgae commonly observed in the seaweed cultivation area (Scrippsiella trochoidea, Prorocentrum micans, Skeletonema costatum, Dunaliella salina) and on the natural phytoplankton assemblage in seawater. Significant inhibiting effects were also observed from in situ bottle (1.0 L) and mesocosm (50 and 1000 L) experiments on the harmful alga Phaeocystis globosa during its blooms. Based on a large-scale field survey, the phytoplankton abundance in the areas with Gracilaria cultivation was demonstrated to be significantly lower than that in the areas without Gracilaria. Collectively, our results showed that large-scale cultivation of G. lemaneiformis is an effective approach to prevent HABs in coastal waters, as an added value to the economically viable industry of Gracilaria cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alamsjah MA, Hirao S, Ishibashi F, Oda T, Fujita Y (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20:713–720

    Article  CAS  Google Scholar 

  • Anderson DM (1997) Turning back the harmful red tide. Nature 388:513–514

    Article  CAS  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuar Coast 25:704–726

    Article  Google Scholar 

  • Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela R, Parsons ML, Renseli JEJ, Townsend DW, Trainerk VL, Vargo GA (2008) Harmful algal blooms and eutrophication: examples of linkages from selected coastal regions of the United States. Harmful Algae 8:39–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176

    Article  Google Scholar 

  • Baek SH, Son M, Bae SW, Shin K, Na DH, Cho H, Yamaguchi M, Kim YO, Kim SW (2013) Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure. J Appl Phycol 25:1555–1565

    Article  CAS  Google Scholar 

  • Baek SH, Shin K, Son M, Bae SW, Cho H, Na DH, Kim YO, Kim SW (2014) Algicidal effects of yellow clay and the thiazolidinedione derivative TD49 on the fish-killing dinoflagellate Cochlodinium polykrikoides in microcosm experiments. J Appl Phycol 26:2367–2378

    Article  CAS  Google Scholar 

  • Harmful algal blooms. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 264–285

  • Cao CJ, Qiu SY, Huang MS (2008) Research of the novel column apparatus filled by the PVA balls with biocidal activities. Res Environ Sci 21:174–178

    CAS  Google Scholar 

  • Codd GA (2000) Cyanobacterial toxins, the perception of water quality, and the prioritization of eutrophication control. Ecol Eng 16:51–60

    Article  Google Scholar 

  • Dziga D, Suda M, Bialczyk J, Urszula CP, Lechowski Z (2007) The alteration of Microcystis aeruginosa biomass and dissolved microcystin-LR concentration following exposure to plant-producing phenols. Environ Toxicol 22:341–346

    Article  CAS  PubMed  Google Scholar 

  • FAO, Fisheries and Aquaculture Department (2012) The state of world fisheries and aquaculture 2012. Rome, pp 41

  • Fei XG (2004) Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512:145–151

    Article  Google Scholar 

  • Garry RT, Hearing P, Cosper EM (1998) Characterization of a lytic virus infectious to the bloom-forming microalga Aureococcus anophagefferens (Pelagophyceae). J Phycol 34:616–621

    Article  Google Scholar 

  • Glibert PM, Anderson DM, Gentien P, Graneli E, Sellner KG (2005) The global complex phenomena of harmful algal blooms. Oceanography 18:130–141

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervaceae (Cleve). Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gumbo RJ, Ross G, Cloete ET (2008) Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol 7:4765–4773

    Google Scholar 

  • Han MY, Kim W (2001) A theoretical consideration of algae removal with clays. Microchem J 68:157–161

    Article  CAS  Google Scholar 

  • Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    Article  CAS  Google Scholar 

  • Hilt S, Lombardo P (2010) Effects of macrophytes on phytoplankton: nutrient uptake versus allelopathy. Verh Int Verein Limnol 30:1317–1320

    CAS  Google Scholar 

  • Hodgkiss IJ, Ho KC (1997) Are changes in NBP ratios in coastal waters the key to increased red tide blooms. Hydrobiologia 352:141–147

    Article  Google Scholar 

  • Hu H, Hong Y (2008) Algal-bloom control by allelopathy of macrophytes—a review. Front Environ Sci Eng China 2:421–438

    Article  Google Scholar 

  • Huo YZ, Zhang JH, Xu SN, Tian QT, Zhang YJ, He PM (2011) Effects of seaweed Gracilaria verrucosa on the growth of microalgae: a case study in the laboratory and in an enclosed sea of Hangzhou Bay, China. Harmful Algae 10:411–418

    Article  Google Scholar 

  • Huo YZ, Wu HL, Chai ZY, Xu SN, Han F, Dong L, He PM (2012) Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan Harbor, China. Aquaculture 326–329:99–105

    Article  Google Scholar 

  • Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK (2000) Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J Appl Phycol 12:37–43

    Article  Google Scholar 

  • Jin Q, Dong SL (2003) Comparative studies on the allelopathic effects of two different strains of U. pertusa on Heterosigma akashiwo and Alexandrium tamarense. J Exp Mar Biol Ecol 293:41–55

    Article  Google Scholar 

  • Kim M-J, Jeong S-Y, Lee S-J (2008) Isolation, identification, and algicidal activity of marine bacteria against Cochlodinium polykrikoides. J Appl Phycol 20:1069–1078

    Article  Google Scholar 

  • Koki N, Toshiyuki S, Ken F, Honjo T, Takashi N (2003) Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218:601–611

    Article  Google Scholar 

  • Körner S, Nicklisch A (2002) Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J Phycol 38:862–871

    Article  Google Scholar 

  • Lei GY, Yang YF, Li X (2010) Inhibitory effects of Gracilaria lemaneiformis on growth of Heterosigma akashiwo and Prorocentrum micans. Mar Environ Sci 29:27–31 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Leu E, Krieger-Liszkay A, Goussias C, Gross EM (2002) Polyphenolicallelo chemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130:2011–2018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu TT, Yang YF, Ye CP, Wang ZH (2006) Inhibitory effects of Gracilaria lemaneiformis on the growth of two red tide microalgal species. J Jinan Univ (Nat Sci) 27:754–759 (in Chinese with English abstract)

    Google Scholar 

  • Lombardo P, Mjelde M, Källqvist T, Brettum P (2013) Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions. Knowl Manag Aquat Ecosyst 409:10

    Article  Google Scholar 

  • Lorenzen C (1967) Determination of chlorophyll and pheopigments:spectrophotometric equations. Limnol Oceanogr 12(2):343–346 doi:10.4319/lo.1967.12.2.0343

  • Lu HM, Xie HH, Gong YX, Wang Q, Yang YF (2011) Secondary metabolites from the seaweed Gracilaria lemaneiformis and their allelopathic effects on Skeletonema costatum. Biochem Syst Ecol 39:397–400

    Article  CAS  Google Scholar 

  • Marinho-Soriano E, Panucci RA, Carneiro MAA, Pereira DC (2009) Evaluation of Gracilaria caudata J. Agardh for bioremediation of nutrients from shrimp farming wastewater. Bioresour Technol 100:6192–6198

    Article  CAS  PubMed  Google Scholar 

  • Nagayama K, Shibata T, Fujimoto K, Honjo T, Nakamura T (2003) Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture 218:601–611

    Article  CAS  Google Scholar 

  • Nan CR, Zhang HZ, Zhao GQ (2004) Allelopathic interactions between the macroalga Ulva pertusa and eight microalgal species. J Sea Res 52:259–268

    Article  Google Scholar 

  • Nan CR, Zhang HZ, Lin SZ, Zhao GQ, Liu XY (2008) Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures. Aquat Bot 89:9–15

    Article  Google Scholar 

  • Nishimura A (1982) Effects of organic matters produces in fish farms on the growth of red tide algae Gymnodinium type ‘65 and Chattonella antiqua. Bull Planktonol Soc Jpn 29:1–7

    Google Scholar 

  • Oh M-Y, Lee S, Jin D-H, Hong Y-K, Jin H-J (2010) Isolation of algicidal compounds from the red alga Corallina pilulifera against red tide microalgae. J Appl Phycol 22:453–458

    Article  CAS  Google Scholar 

  • Pan G, Zhang MM, Yan H, Zou H, Chen H (2003) Kinetics and mechanism of removing Microcystis aeruginosa using clay flocculation. Chin J Environ Sci 24:1–10

    Google Scholar 

  • Qi YZ (2003) Red tides in coastal China Sea. Science Press, Beijing

    Google Scholar 

  • Qian PY, Wu MCS, Ni H (2001) Comparison of nutrients release among some maricultured animals. Aquaculture 200:305–316

    Article  Google Scholar 

  • Shao JH, Wu ZX, Yu GL, Peng X, Li RH (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928

    Article  CAS  PubMed  Google Scholar 

  • Sharp JH, Underhill PA, Hughes D (1979) Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J Phycol 15:353–362

    Article  CAS  Google Scholar 

  • Shen YW, Liu YD, Wu GQ, Ao HY, Qiu CQ (2004) Mechanical removal of heavy cyanobacterial bloom in the hyper-eutrophic lake Dianchi. Acta Hydrobiol Sin 28:131–136 (in Chinese with English abstract)

    Google Scholar 

  • Skriptsova AV, Miroshnikova NV (2011) Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bioresour Technol 102:3149–3154

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Home AJ (1988) Experimental measurement of resource competition between planktonic microalgae and macroalgae (seaweeds) in mesocosms simulating the San Francisco Bay-Estuary, California. Hydrobiologia 159:259–268

    Article  Google Scholar 

  • SOA (2001–2012) The public report on marine environmental quality of China. http://www.coi.gov.cn/gongbao/. Accessed 23 May 2013

  • SOA (2013) The public report on marine environmental quality of China. http://www.soa.gov.cn/zwgk/hygb/zghyzhgb/zhgb/201303/t20130306_24229.html. Accessed 10 Oct 2013

  • Sun X, Song X, Zhang B, Yu Z (1999) A study on the coagulation of clay-MMH system with red tide organisms. Mar Sci 13:46–49

    Google Scholar 

  • Tang YZ, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10:480–488

    Article  Google Scholar 

  • Tang YZ, Kang Y, Berry D, Gobler CJ (2014) The ability of the red macroalga, Porphyra purpurea (Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae. J Appl Phycol. doi:10.1007/s10811-014-0338-y

    Google Scholar 

  • Tilney CL, Pokrzywinski KL, Coyne KJ, Warner ME (2014) Growth, death, and photobiology of dinoflagellates (Dinophyceae) under bacterial-algicide control. J Appl Phycol 26:2117–2127

    Article  CAS  Google Scholar 

  • Trinchet I, Cadel-Six S, Djediat C, Marie B, Bernard C, Puiseux-Dao S, Krys S, Edery M (2013) Toxicity of harmful cyanobacterial blooms to bream and roach. Toxicon 71:121–127

    Article  CAS  PubMed  Google Scholar 

  • Troell M, Ronnback P, Halling C, Kautsky N, Buschmann A (1999) Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. J Appl Phycol 11:89–97

    Article  CAS  Google Scholar 

  • Utermöhl H (1958) Zur vervollkommung der quantitativen phytoplankton—methodik. Mitteilungen der internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–38

  • Wang RJ, Xiao H, Zhang PY, Qu L, Cai HJ, Tang XX (2007a) Allelopathic effects of Ulva pertusa, Corallina pilulifera and Sargassum thunbergii on the growth of the dinoflagellates Heterosigma akashiwo and Alexandrium tamarense. J Appl Phycol 19:109–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Yu ZM, Song XX, Tang XX, Zhang SD (2007b) Effects of macroalgae Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of four species of bloom-forming dinoflagellates. Aquat Bot 86:139–147

    Article  Google Scholar 

  • Wang J, Zhu JY, Liu SP, Liu BY, Gao YN, Wu ZB (2011) Generation of reactive oxygen species in cyanobacteria and green algae induced by allelochemicals of submerged macrophytes. Chemosphere 85:977–982

    Article  CAS  PubMed  Google Scholar 

  • Xie P (2003) The silver carps, Aristichthys nobilis and the controlling of algal bloom. Science Press, Beijing

    Google Scholar 

  • Xu SN, He PM (2006) Analysis of phenomena for frequent occurrences of red tides and bioremediation by seaweed cultivation. J Fish China 30:554–561 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Xu D, Gao ZQ, Zhang XW, Qi ZH, Meng CX, Zhuang ZM, Ye NH (2011) Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication. Bioresour Technol 102:9912–9918

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Song JM, Lin XT, Nie XP (2005) Seaweed cultivation and its ecological roles in coastal waters. Mar Environ Sci 24:77–80 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yang YF, Fei XG, Song JM, Hu HY, Wang GC, Chung IK (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248–255

    Article  Google Scholar 

  • Ye CP, Zhang MC, Yang YF (2012) Inhibition of photosynthesis in the microalga Chaetoceros curvisetus (Bacillariophyta) by macroalga Gracilaria lemaneiformis (Rhodophyta). Chin J Oceanol Limn 31:1–7

    Google Scholar 

  • Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall/Pearson, Upper Saddle River

    Google Scholar 

  • Zhang SD, Yu ZM, Song F, Wang Y (2005) Competition about nutrients between Gracilaria lemaneiformis and Prorocentrum donghaiense. Acta Ecol Sin 25:2676–2680 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhang J, Yang YF, Gong YX, Zhang JY, Jiang JL (2010) The lytic effect of bacteria in the phycosphere of Skeletonema costatum and Scrippsiella trochoidea. Acta Sci Circumst 30:1271–1279 (in Chinese with English abstract)

    Google Scholar 

  • Zhu JY, Liu BY, Wang J, Gao YN, Wu ZB (2010) Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98:196–203

    Article  CAS  PubMed  Google Scholar 

  • Zingone A, Enevoldsen HO (2000) The diversity of harmful algal blooms: a challenge for science and management. Ocean Coast Manag 43:725–748

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of the Department of Science and Technology of China (2012BAD18B01), Chinese Special Fund for Agro-scientific Research in the Public Interest (201403008), the National Natural Science Foundation of China (U1301235, 41173079), and the Frontier Research Program in Marine Ecology of IOCAS (Y32331101Q). None of these sponsors had particular involvement or intention in the study design; the collection, analysis, and interpretation of data; the writing of the paper; and the decision to submit the article for publication. We are grateful to Prof. Weizhou Chen from Shantou University, China, for sharing data about the annual production of the seaweed G. lemaneiformis. We are also very grateful to the anonymous reviewers’ constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Yang or Yingzhong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, Q., Chai, Z. et al. Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta). J Appl Phycol 27, 2341–2352 (2015). https://doi.org/10.1007/s10811-014-0486-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0486-0

Keywords

Navigation