Skip to main content
Log in

Lipid productivity and fatty acid composition in Chlorella and Scenepdesmus strains grown in nitrogen-stressed conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Thirty Chlorella and 30 Scenedesmus strains grown in nitrogen-stressed conditions (70 mg L−1 N) were analyzed for biomass accumulation, lipid productivity, protein, and fatty acid (FA) composition. Scenedesmus strains produced more biomass (4.02 ± 0.73 g L−1) after 14 days in culture compared to Chlorella strains (2.57 ± 0.12 g L−1). Protein content decreased and lipid content increased from days 8 to 14 with an increase in triacylglycerol (TAG) accumulation in most strains. By day 14, Scenedesmus strains generally had higher lipid productivity (53.5 ± 3.7 mg lipid L−1 day−1) than Chlorella strains (35.1 ± 2.8 mg lipid L−1 day−1) with the lipids consisting mainly of C16–18 TAGs. Scenedesmus strains generally had a more suitable FA profile with higher amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs) and a smaller polyunsaturated fatty acid (PUFA) component. Chlorella strains had a larger PUFA component and smaller MUFA component. The general trend in the FA composition of Chlorella strains was oleic > palmitic > α-linolenic = linoleic > eicosenoic > heptadecenoic > stearic acid. For Scenedesmus strains, the general trend was oleic > palmitic > linoleic > α-linolenic > stearic > eicosenoic > palmitoleic > heptadecenoic acid. The most promising strains with the highest lipid productivity and most suitable FA profiles were Scenedesmus sp. MACC 401, Scenedesmus soli MACC 721, and Scenedesmus ecornis MACC 714. Although Chlorella sp. MACC 519 had lower lipid productivity, the FA profile was good with a lower PUFA component compared to the other Chlorella strains analyzed and a low linolenic acid concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Borowitzka MA, Moheimani NR (2012) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang. doi:10.1007/s11027-010-9271-9

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  PubMed  CAS  Google Scholar 

  • da Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  PubMed  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, setting potential and FA profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol. doi:10.1007/s10811-011-9723-y

  • Gurr MI, James AT (1980) Lipid biochemistry: an introduction, 3rd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Hadley NF (1985) The adaptive role of lipids in biological systems. Wiley, New York

    Google Scholar 

  • Hempel N, Petrick I, Behrendt F (2012) Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J Appl Phycol. doi:10.1007/s10811-012-9795-3

  • Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuels production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Huang GH, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  PubMed  CAS  Google Scholar 

  • Kuznjecov ED, Vladimirova MG (1964) Zelezo kak faktor, limitirujusij rost Chlorella na crede Tamiya. Fiziologia Rastenii 11:615–619

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  PubMed  CAS  Google Scholar 

  • Ördög V (1982) Apparatus for laboratory algal bioassay. Int Revue Ges Hydrobiol 67:127–136

    Google Scholar 

  • Ördög V, Stirk WA, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol. doi:10.1007/s10811-9711-2

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  PubMed  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol 102:10–16

    Article  PubMed  CAS  Google Scholar 

  • Stansell GR, Gray VM, Sym SD (2012) Microalgal fatty acid composition: implications for biodiesel quality. J Appl Phycol. doi:10.1007/s10811-011-9696-x

  • Tokuşoglu Ö, Ünal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68:1144–1148

    Article  Google Scholar 

Download references

Acknowledgments

The European Union Project, the University of KwaZulu-Natal, and the National Research Foundation (South Africa)/Hungarian Collaborative Project are thanked for financial support. The authors also acknowledge the TÁMOP-4.2.2-08/1-2008-0020 project for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vince Ördög.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ördög, V., Stirk, W.A., Bálint, P. et al. Lipid productivity and fatty acid composition in Chlorella and Scenepdesmus strains grown in nitrogen-stressed conditions. J Appl Phycol 25, 233–243 (2013). https://doi.org/10.1007/s10811-012-9857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9857-6

Keywords

Navigation