Skip to main content
Log in

Homotopy analysis method for thermophoretic particle deposition effect on magnetohydrodynamic mixed convective heat and mass transfer past a porous wedge in the presence of suction

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Homotopy analysis method is used to analyze the effect of thermophoretic particle deposition on magnetohydrodynamic mixed convection flow with heat and mass transfer over a porous wedge. An explicit analytical solution is obtained which is valid throughout the solution domain and is consistent with numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Goren, “Thermophoresis of aerosol particles in laminar boundary layer on flat plate,” J. Colloid Interface Sci., 61, 77–85 (1977).

    Article  Google Scholar 

  2. W. G. England and A. F. Emery, “Thermal radiation effects on laminar free convection boundary layer of an absorbing gas,” J. Heat Transfer, 31, 37–44 (1969).

    Google Scholar 

  3. A. Raptis, “Flow of a micro polar fluid past a continuously moving plate by the presence of radiation,” Int. J. Heat Mass Transfer, 4, 2865–2866 (1988).

    Google Scholar 

  4. I. U. Mbeledogu and A. Ogulu, “Heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous flat plate in the presence of radiative heat transfer,” Int. J. Heat Mass Transfer, 50, 1902–1908 (2007).

    Article  MATH  Google Scholar 

  5. M. S. Alam, M. M. Rahman, and M. A. Sattar, “Effects of variable suction and thermophoresis on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate in the presence of thermal radiation,” Int. J. Thermal Sci., 47, 758–765 (2008).

    Article  Google Scholar 

  6. M. A. Hossain and H. S. Takhar, “Radiation effects on mixed convection along a vertical plate with uniform surface temperature,” J. Heat Mass Transfer, 31, 243–248 (1996).

    Article  ADS  Google Scholar 

  7. H. M. Duwairi and R. A. Damesh, “Magnetohydrodynamic natural convection heat transfer from radiate vertical porous surface,” J. Heat Mass Transfer, 40, 787–792 (2004).

    Article  ADS  Google Scholar 

  8. H. M. Duwairi and R. A. Damesh, “MHD boundary aiding and opposing flows with viscous dissipation effects from radiate vertical surfaces,” Canad. J. Chem. Eng., 82, 1–6 (2004).

    Article  Google Scholar 

  9. H. M. Duwairi, “Viscous and joule heating effects on forced convection flow from radiate isothermal porous surfaces,” Int. J. Numer. Methods Heat Fluid Flow., 15, 429–440 (2005).

    Article  Google Scholar 

  10. R. A. Damesh, H. M. Duwairi, and M. Al-Odat, “Similarity analysis of magnetic field and thermal radiation effects on forced convection flow,” Turkish J. Eng. Env. Sci., 30, 83–89 (2006).

    Google Scholar 

  11. P. Goldsmith and F. G. May, “Diffusiophoresis and thermophoresis in water vapour systems,” in: C. N. Davies (ed.), Aerosol Science, Academic Press, London (1966), pp. 163–194.

    Google Scholar 

  12. S. Jayaraj, K. K. Dinesh, and K. L. Pallai, “Thermophoresis in natural convection with variable properties,” J. Heat Mass Transfer, 34, 469–475 (1999).

    Article  ADS  Google Scholar 

  13. A. Selim, M. A. Hossain, and D. A. S. Rees, “The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis,” Int. J. Thermal Sci., 42, 973–982 (2003).

    Article  Google Scholar 

  14. J. M. Hales, L. C. Schwendiman, and T. W. Horst, “Aerosol transport in a naturally-convected boundary layer,” Int. J. Heat Mass Transfer, 15, 1837–1849 (1972).

    Article  MATH  Google Scholar 

  15. Ali J. Chamkha and I. Pop, “Effects of thermophoretic particle deposition in free convection boundary layer from a vertical flat plate embedded in a porous medium,” Int. Comm. Heat Mass Transfer, 31, 421–430 (2004).

    Article  Google Scholar 

  16. D. A. Nield and A. Bejan, Convection in Porous Media, Springer, New York (1998).

    Google Scholar 

  17. P. V. S. N. Murthy and P. Singh, “Heat and mass transfer by natural convection in a non-Darcy porous medium,” Acta Mech., 38, 243–254 (1999).

    Article  Google Scholar 

  18. S. J. Liao, “The proposed homotopy analysis techniques for the solution of nonlinear problems, ” Ph. D. Dissertation, Shanghai (1992).

  19. S. J. Liao, “An approximate solution technique which does not depend upon small parameters: a special example,” Int. J. Nonlinear Mech., 30, 371–380 (1995).

    Article  MATH  ADS  Google Scholar 

  20. S. J. Liao “A uniformly valid analytical solution of two dimensional viscous flow over a semi-infinite flat plate,” J. Fluid Mech., 385, 101–128 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. S. J. Liao, “An explicit, totally analytic approximate solution for Blasius-viscous flow problems,” Int. J. Non-linear Mech., 34, 759–778 (1999).

    Article  MATH  ADS  Google Scholar 

  22. S. J. Liao, “An analytic approximation of the drag coefficient for the viscous flow past a sphere,” Int. J. Nonlinear Mech., 37, 1–18 (2002).

    Article  MATH  ADS  Google Scholar 

  23. S. J. Liao and A. Campo, “Analytical solutions of the temperature distribution in Blasius viscous flow problems,” J. Fluid Mech., 453, 411–425 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. N. G. Kafoussias and N. D. Nanousis, “Magnetohydrodynamic laminar boundary layer flow over a wedge with suction or injection,” Canad. J. Phys., 75, 733–741 (1997).

    Article  ADS  Google Scholar 

  25. S. Gill, “A process for the step-by-step integration of differential equations in an automatic digital computing machine,” Math. Proc. Cambridge Philos. Soc., 47, No. 1. 96–108 (1951).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandasamy.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 2, pp. 126–139, March–April, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandasamy, R., Muhaimin, I. Homotopy analysis method for thermophoretic particle deposition effect on magnetohydrodynamic mixed convective heat and mass transfer past a porous wedge in the presence of suction. J Appl Mech Tech Phy 51, 249–260 (2010). https://doi.org/10.1007/s10808-010-0035-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10808-010-0035-9

Key words

Navigation