Skip to main content

Advertisement

Log in

Modeling ionic intercalation and solid-state diffusion using typical descriptors of batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mathematical models can predict the performances of batteries, such as their state of charge and state of health. Among physicochemical governing equations, Fick’s first and second laws describe ionic intercalation and solid-state diffusion in electrode particles, respectively. Conventionally, molar concentration and current density are the main descriptors for ionic intercalation and solid-state diffusion in the electrochemical models. However, more relevant and typical descriptors for rechargeable batteries are intercalation quantity (i.e., x in LixC6) and C-rate. Herein, we translate the governing equations of Fick’s laws based on intercalation quantity and C-rate, instead of the molar concentration and current density. The new governing equations enabled faster computation of the electrochemical models, benefited by the intrinsically dimensionless properties of the descriptors. Moreover, the newly derived equations provide a practical insight to design the morphology of particles for the improved rate capability. Implementing the newly derived governing equations to a single-particle model demonstrated faster, efficient, and reliable simulation to investigate the effects of particle size, diffusivity, and C-rate on lithium-ion batteries performances. These new governing equations can be implemented in various models for batteries in general, enabling an efficient computation and facilitated communication among researchers investigating energy storage.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

t :

Time [s]

D :

Solid-state chemical diffusion coefficient (or, diffusivity) [cm2 s1]

n :

Orthonormal vector on the electrode–electrolyte boundary for ion intercalation (positive direction: from electrode to electrolyte)

C-rate:

Ratio of charging/discharging current to current that charges/discharges the intercalation host in one hour [h−1]

C-rate :

Dimensionless C-rate, which is equivalent to C-rate [h−1] × 1 [h]

V :

Volume of an intercalation host [cm3]

S :

Microscopic surface area into which ions can intercalate [cm2]

c :

Local concentration of ions in the host [mol cm3]

z :

Ion charge number

F :

Faraday’s constant, 96,485 [C mol1]

R :

Universal gas constant, 8.3145 [J mol1 K1]

T :

Temperature [K]

ρ :

Density of intercalation host [g cm3]

Q :

Theoretical specific capacity of intercalation host [C g1]

x :

Intercalation quantity, x = czF/ρQ

v :

Intercalation velocity [cm s1] = \(- D\nabla x\), which can be regarded as the propagation vector of the intercalation quantity

i :

Current density [A cm2]

i 0 :

Exchange current density [A cm2]

η ct :

Charge transfer overpotential [V]

α :

Charge transfer coefficient

U(x):

Open-circuit potential [V] as a function of x

V(x):

Cell voltage [V]

ESR:

Equivalent series resistance [Ω cm2]

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048

    Article  CAS  Google Scholar 

  2. Minakshi M, Singh P, Sharma N, Blackford M, Ionescu M (2011) Lithium extraction−insertion from/into LiCoPO4 in aqueous batteries. Ind Eng Chem Res 50:1899–1905. https://doi.org/10.1021/ie102267x

    Article  CAS  Google Scholar 

  3. Minakshi M, Visbal H, Mitchell DRG, Fichtner M (2018) Bio-waste chicken eggshells to store energy. Dalton Trans 47:16828–16834. https://doi.org/10.1039/C8DT03252A

    Article  CAS  PubMed  Google Scholar 

  4. Minakshi M, Higley S, Baur C, Mitchell DRG, Jones RT, Fichtner M (2019) Calcined chicken eggshell electrode for battery and supercapacitor applications. RSC Adv 9:26981–26995. https://doi.org/10.1039/C9RA04289J

    Article  CAS  Google Scholar 

  5. Minakshi M, Mitchell DR, Jones RT, Pramanik NC, Jean-Fulcrand A, Garnweitner G (2020) A hybrid electrochemical energy storage device using sustainable electrode materials. ChemistrySelect 5:1597–1606. https://doi.org/10.1002/slct.201904553

    Article  CAS  Google Scholar 

  6. Dees DW, Battaglia VS, Bélanger A (2002) Electrochemical modeling of lithium polymer batteries. J Power Sources 110:310–320. https://doi.org/10.1016/S0378-7753(02)00193-3

    Article  CAS  Google Scholar 

  7. Santhanagopalan S, Guo Q, Ramadass P, White RE (2006) Review of models for predicting the cycling performance of lithium ion batteries. J Power Sources 156:620–628. https://doi.org/10.1016/j.jpowsour.2005.05.070

    Article  CAS  Google Scholar 

  8. Manzetti S, Mariasiu F (2015) Electric vehicle battery technologies: from present state to future systems. Renew Sust Energ Rev 51:1004–1012. https://doi.org/10.1016/j.rser.2015.07.010

    Article  CAS  Google Scholar 

  9. Shepherd CM (1965) Design of primary and secondary cells II. An equation describing battery discharge. J Electrochem Soc 112:657–664. https://doi.org/10.1149/1.2423659

    Article  CAS  Google Scholar 

  10. Buller S, Thele M, Karden E, De Doncker RW (2003) Impedance-based non-linear dynamic battery modeling for automotive applications. J Power Sources 113:422–430. https://doi.org/10.1016/S0378-7753(02)00558-X

    Article  CAS  Google Scholar 

  11. Zhang S, Xu K, Jow T (2006) EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim Acta 51:1636–1640. https://doi.org/10.1016/j.electacta.2005.02.137

    Article  CAS  Google Scholar 

  12. Kim J-H, Lee S-J, Kim E-S, Kim S-K, Kim C-H, Prikler L (2014) Modeling of battery for EV using EMTP/ATPDraw. J Electr Eng Technol 9:98–105. https://doi.org/10.5370/JEET.2014.9.1.098

    Article  Google Scholar 

  13. An Y, Jiang H (2013) A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries. Modell Simul Mater Sci Eng 21:074007. https://doi.org/10.1088/0965-0393/21/7/074007

    Article  CAS  Google Scholar 

  14. Meng J, Luo G, Ricco M, Swierczynski M, Stroe D-I, Teodorescu R (2018) Overview of lithium-ion battery modeling methods for state-of-charge estimation in electrical vehicles. Appl Sci 8:659. https://doi.org/10.3390/app8050659

    Article  CAS  Google Scholar 

  15. Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533. https://doi.org/10.1149/1.2221597

    Article  CAS  Google Scholar 

  16. Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141:982–990. https://doi.org/10.1149/1.2054868

    Article  CAS  Google Scholar 

  17. Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10. https://doi.org/10.1149/1.2054684

    Article  CAS  Google Scholar 

  18. Doyle M, Newman J (1995) The use of mathematical modeling in the design of lithium/polymer battery systems. Electrochim Acta 40:2191–2196. https://doi.org/10.1016/0013-4686(95)00162-8

    Article  CAS  Google Scholar 

  19. Zhang T, Guo Z (2014) Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries. Modell Simul Mater Sci Eng 22:025016. https://doi.org/10.1088/0965-0393/22/2/025016

    Article  CAS  Google Scholar 

  20. Santhanagopalan S, White RE (2007) Online estimation of the state of charge of a lithium ion cell. ECS Trans 3:191–208. https://doi.org/10.1016/j.jpowsour.2006.04.146

    Article  CAS  Google Scholar 

  21. Di Domenico D, Stefanopoulou A, Fiengo G (2010) Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter. J Dyn Syst Meas Contr 132:061302. https://doi.org/10.1115/1.4002475

    Article  Google Scholar 

  22. Chaturvedi NA, Klein R, Christensen J, Ahmed J, Kojic A (2010) Algorithms for advanced battery-management systems. IEEE Control Syst Mag 30:49–68. https://doi.org/10.1109/MCS.2010.936293

    Article  Google Scholar 

  23. Li J, Wang D, Pecht M (2019) An electrochemical model for high C-rate conditions in lithium-ion batteries. J Power Sources 436:226885. https://doi.org/10.1016/j.jpowsour.2019.226885

    Article  CAS  Google Scholar 

  24. Guo M, Sikha G, White RE (2011) Single-particle model for a lithium-ion cell: thermal behavior. J Electrochem Soc 158:A122–A132. https://doi.org/10.1149/1.3521314

    Article  CAS  Google Scholar 

  25. Bower AF, Guduru PR (2012) A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Modell Simul Mater Sci Eng 20:045004. https://doi.org/10.1088/0965-0393/20/4/045004

    Article  CAS  Google Scholar 

  26. Moura SJ, Argomedo FB, Klein R, Mirtabatabaei A, Krstic M (2017) Battery state estimation for a single particle model with electrolyte dynamics. IEEE T Contr Syst T 25:453–468. https://doi.org/10.1109/TCST.2016.2571663

    Article  Google Scholar 

  27. Li J, Adewuyi K, Lotfi N, Landers RG, Park J (2018) A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SoH) estimation. Appl Energy 212:1178–1190. https://doi.org/10.1016/j.apenergy.2018.01.011

    Article  CAS  Google Scholar 

  28. Santoki J, Schneider D, Selzer M, Wang F, Kamlah M, Nestler B (2018) Phase-field study of surface irregularities of a cathode particle during intercalation. Modell Simul Mater Sci Eng 26:065013. https://doi.org/10.1088/1361-651X/aad20a

    Article  Google Scholar 

  29. Zhang D, Popov BN, White RE (2000) Modeling lithium intercalation of a single spinel particle under potentiodynamic control. J Electrochem Soc 147:831. https://doi.org/10.1149/1.1393279

    Article  CAS  Google Scholar 

  30. Du W, Xue N, Sastry AM, Martins JR, Shyy W (2013) Energy density comparison of Li-ion cathode materials using dimensional analysis. J Electrochem Soc 160:A1187–A1193. https://doi.org/10.1149/2.069308jes

    Article  CAS  Google Scholar 

  31. Wagner S, Oberland A, Turek T (2016) Analytical approach for evaluation of lithium-ion battery cells. Energy Technol 4:1543–1549. https://doi.org/10.1002/ente.201600137

    Article  CAS  Google Scholar 

  32. Stephenson DE, Hartman EM, Harb JN, Wheeler DR (2007) Modeling of particle-particle interactions in porous cathodes for lithium-ion batteries. J Electrochem Soc 154:A1146–A1155. https://doi.org/10.1149/1.2783772

    Article  CAS  Google Scholar 

  33. Weisstein EW "Oblate Spheroid." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/OblateSpheroid.html.

  34. Lain MJ, Brandon J, Kendrick E (2019) Design strategies for high power vs. high energy lithium ion cells. Batteries 5:64. https://doi.org/https://doi.org/10.3390/batteries5040064

  35. Li J, Shunmugasundaram R, Doig R, Dahn JR (2016) In situ X-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem Mater 28:162–171. https://doi.org/10.1021/acs.chemmater.5b03500

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF-2018R1C1B6004808 and NRF-2018R1A5A1025594) of the Korean Ministry of Science and ICT. The authors are grateful to Mr. Fuead Hasan for the careful proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Deog Yoo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Mohanty, S.K. & Yoo, H.D. Modeling ionic intercalation and solid-state diffusion using typical descriptors of batteries. J Appl Electrochem 51, 703–713 (2021). https://doi.org/10.1007/s10800-021-01530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01530-8

Keywords

Navigation