Skip to main content
Log in

Fabrication of co-doped CdSe quantum dot-sensitized TiO2 nanotubes by ultrasound-assisted method and their photoelectrochemical properties

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

TiO2 nanotubes (TiO2 NTs) sensitized with Co-doped CdSe quantum dots (Co-CdSe QDs) were synthesized through an ultrasound-assisted hydrothermal method. Crystallinity and morphology of the prepared samples were characterized by X-ray diffraction and field-emission scanning electron microscopy. Atomic composition was investigated using an energy dispersive spectrometer. Vibration features and phonon modes were confirmed with a Raman spectrometer. Chemical composition and electronic structure were analyzed through X-ray photoelectron spectroscopy. Photoelectrochemical behavior was measured with an electrochemical workstation under 300 W Xe lamp irradiation at room temperature. Results indicated the excellent stability and photoelectrochemical performance of the prepared samples. Compared with TiO2 NTs (0.06 mA cm−2), CdSe QD-sensitized TiO2 NTs (CdSe/TiO2 NTs) exhibited higher photoresponse (0.305 mA cm−2), whereas Co10at.%–CdSe QD-sensitized TiO2 NTs (Co10.at.%–CdSe/TiO2 NTs) showed the highest photoresponse with a stable photocurrent density up to 0.47 mA cm−2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang WC, Li F, Zhang DQ, Leung DYC, Li GS (2016) Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Appl Surf Sci 362:490

    Article  CAS  Google Scholar 

  2. Liang FX, Zhang J, Zheng LX, Tsang CK, Li H, Shu SW, Cheng H, Li YY (2013) Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties. J Mater Res 28(3):405

    Article  CAS  Google Scholar 

  3. Wang QY, Song L, Qiao JL, Jin RC, Yu YF, Gao SM (2015) CdS-CdSe (CdTe) core shell quantum dots sensitized TiO2 nanotube array solar cells. Sol Energy Mater Sol Cells 132:650

    Article  CAS  Google Scholar 

  4. Subramanian VR, Sarker S, Yu B, Kar A (2013) Titanium dioxide nanotubes and its composites: photocatalytic and other photo-driven applications. J Mater Res 28(3):280

    Article  CAS  Google Scholar 

  5. Shuang S, Zheng X, Zhang Z (2017) Enhanced photocatalytic properties of CdS nanoparticles decorated ɑ-Fe2O3, nanopillar arrays under visible light. J Colloid Interf Sci 494:107

    Article  CAS  Google Scholar 

  6. Liu Y, Dong D, Zhang YZ, Wang LL, Yang G, Shen F, Deng SH, Zhang XH, Zhang SR (2017) Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J Mater Res 32(4):757

    Article  CAS  Google Scholar 

  7. El-Maghrabi HH, Nada EA, Soliman FS, Moustafa YM, Amin AES (2016) One pot environmental friendly nanocomposite synthesis of novel TiO2-nanotubes on graphene sheets as effective photocatalyst. J Petrol Sci Eng 25:575

    Google Scholar 

  8. Xu M, Da P, Wu H, Zhao D, Zheng G (2012) Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett 12:1503

    Article  CAS  Google Scholar 

  9. Sun Y, Zhao Q, Wang G, Yan K (2017) Influence of water content on the formation of TiO2 nanotubes and photoelectrochemical hydrogen generation. J Alloy Compd 711:514

    Article  CAS  Google Scholar 

  10. Choi H, Shin D, Yeo BC, Song T, Han SS, Park N, Kim S (2016) Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catal 6:2745

    Article  CAS  Google Scholar 

  11. Georgieva J, Valova E, Armyanov S, Tatchev D, Sotiropoulos S, Avramova I, Dimitrovaa N, Hubind A, Steenhaut O (2017) A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance. Appl Surf Sci 413:284

    Article  CAS  Google Scholar 

  12. Tian HW, Shen K, Hu XY, Qiao L, Zheng WT (2017) N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity. J Alloy Compd 691:369

    Article  CAS  Google Scholar 

  13. Chatzitakis A, Grandcolas M, Xu K, Mei S, Yang J, Jensen IJT, Simon C, Norby T (2017) Assessing the photoelectrochemical properties of C, N, F codoped TiO2 nanotubes of different length. Cata Today 287:161

    Article  CAS  Google Scholar 

  14. Fadlallah MM (2017) Magnetic, electronic, optical, and photocatalytic properties of nonmetal and halogen-doped anatase TiO2 nanotubes. Physica E 89:50

    Article  CAS  Google Scholar 

  15. Mollavali M, Falamaki C, Rohani S (2015) Preparation of multiple-doped TiO2 nanotube arrays with nitrogen, carbon and nickel with enhanced visible light photoelectrochemical activity via single-step anodization. Int J Hydrog Energy 40:12239

    Article  CAS  Google Scholar 

  16. Xiao F (2012) An efficient layer-by-layer self-assembly of metal-TiO2 nanoring/nanotube heterostructures, M/T-NRNT (M = Au, Ag, Pt), for versatile catalytic applications. Commun Chem 48:6538

    Article  CAS  Google Scholar 

  17. Hosseinbabaei F, MLajvardi M, Alaeisheini N (2015) The energy barrier at noble metal/TiO2 junctions. J Appl Phys Lett 106(8):27

    Google Scholar 

  18. Xiao FX, Miao J, Wang HY, Liu B (2013) Self-assembly of hierarchically ordered CdS quantum dots-TiO2 nanotube array heterostructures as efficient visible light photocatalysts for photoredox applications. J Mater Chem 1(39):12229

    Article  CAS  Google Scholar 

  19. Li Z, Yu L, Liu Y, Sun S (2014) CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim Acta 129:379

    Article  CAS  Google Scholar 

  20. Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, Choi KS (2008) Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem Mater 20:5266

    Article  CAS  Google Scholar 

  21. Feng H, Tang N, Zhang S, Liu B, Cai Q (2017) Fabrication of layered (CdS-Mn/MoS2/CdTe)-promoted TiO2 nanotube arrays with superior photocatalytic properties. J Colloid Interf Sci 486:58

    Article  CAS  Google Scholar 

  22. Feng H, Thanhthuy TT, Chen L, Yuan L, Cai Q (2013) Visible light-induced efficiently oxidative decomposition of p-Nitrophenol by CdTe/TiO2 nanotube arrays. Chem Eng J 215:591

    Article  Google Scholar 

  23. Kalandaragh YA, Khodayari A (2010) Ultrasound-assisted preparation of CdSe nanocrystals in the presence of polyvinyl alcohol as a capping agent. Mat Sci Semicond Process 13:225

    Article  Google Scholar 

  24. Yu L, Wang D, Ye D (2015) CdS nanoparticles decorated anatase TiO2 nanotubes with enhanced visible light photocatalytic activity. Sep Purif Technol 156:708

    Article  CAS  Google Scholar 

  25. Kim J, Choi S, Noh J, Yoon S, Lee S, Noh T, Frank AJ, Hong K (2009) Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells. Langmuir 25(9):5348

    Article  CAS  Google Scholar 

  26. Gan JY, Zhai T, Lu XH, Xie SL, Mao YC, Tong YX (2012) Facile preparation and photoelectrochemical properties of CdSe/TiO2 NTAs. Mater Res Bull 47:580

    Article  CAS  Google Scholar 

  27. Li SY, Zhao HP, Tian D (2013) Aqueous synthesis of highly monodispersed thiol-capped CdSe quantum dots based on the electrochemical method. Mat Sci Semicond Process 16:149

    Article  Google Scholar 

  28. Das S, Dutta A, Banerjee S, Sinha TP (2014) Phonon modes and activation energy of Fe-doped CdSe nanoparticles. Mat Sci Semicond Process 18:152

    Article  CAS  Google Scholar 

  29. Wang P, Zhang Y, Su L, Gao WZ, Zhang BL, Chu H, Wang YD, Zhao J, Yu WW (2015) Photoelectrochemical properties of CdS/CdSe sensitized TiO2 nanocable arrays. Electrochim Acta 165:110

    Article  CAS  Google Scholar 

  30. Gaur P, Malik BP, Gaur A (2015) Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique. Physica B 457:332

    Article  CAS  Google Scholar 

  31. Venkata-Haritha M, Gopi CVVM., Thulasi-Varma CV, Kim SK, Kim HJ (2016) Influence of Mn2+ incorporation in CdSe quantum dots for high performance of CdS-CdSe quantum dot sensitized solar cells. J Photochem Photobiol A 315:34

    Article  CAS  Google Scholar 

  32. Huang J, Jiang Y, Duan HY, Liu C, Mi LF, Lan XZ, Zhong HH (2013) Large stokes shift of Ag doped CdSe quantum dots via aqueous route. J Nanosci Nanotechnol 13:6687

    Article  Google Scholar 

  33. Zou X, He S, Teng G, Zhao C (2014) Performance study of CdS/Co-doped-CdSe quantum dot sensitized solar cells. J Nanomater 2014(19):50

    Google Scholar 

  34. Singh J, Verma NK (2014) Structural, optical and magnetic properties of cobalt-doped CdSe nanoparticles. Bull Mater Sci 37(3):541

    Article  CAS  Google Scholar 

  35. Sung YM, Kwak WC, Kim W, kim TG (2008) Enhanced ripening behavior of Mg-doped CdSe quantum dots. J Mater Res 23(7):1916

    Article  CAS  Google Scholar 

  36. Mukherjee B, Smith YR, Subramanian V (2012) CdSe nanocrystal assemblies on anodized TiO2 nanotubes: optical, surface, and photoelectrochemical properties. J Phys Chem C 29:15175

    Article  Google Scholar 

  37. Zhang J, Bang JH, Tang CC, Kamat PV (2010) Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4:387

    Article  CAS  Google Scholar 

  38. Hesabi ZR, Allam NK, Dahmen K, Garmestani H, El-Sayed MA (2011) Self-standing crystalline TiO2 nanotubes/ CNTs heterojunction membrane: synthesis and characterization. ACS Appl Mater Interfaces 3:952

    Article  CAS  Google Scholar 

  39. Kontos AI, Likodimos V, Stergiopoulos T, Tsoukleris DS, Falaras P, Rabias I, Papavassiliou G, Kim D, Kunze J, Schmuki P (2009) Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem Mater 21:662

    Article  CAS  Google Scholar 

  40. Macak JM, Gong BG, Hueppe M, Schmuki P (2007) Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv Mater 19:3027

    Article  CAS  Google Scholar 

  41. Raut VS, Lokhande CD, Killedar VV (2017) Synthesis and studies on effect of indium doping on physical properties of electrodeposited CdSe thin films. Mater Sci 28:3140

    CAS  Google Scholar 

  42. Kaviyarasu K, Raja A, Devarajan PA (2013) Structural elucidation and spectral characterizations of Co3O4 nanoflakes. Spectrochim Acta A 114:586

    Article  CAS  Google Scholar 

  43. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank AJ (2011) General strategy for fabricating transparent TiO2 nanotube arrays fordye-sensitized photoelectrodes illumination geometry and transport proper-ties. ACS Nano 5:2647

    Article  CAS  Google Scholar 

  44. Karki BB (2015) First-principles computation of mantle materials in crystalline and amorphous phases. Phys Earth Planet Inter 240:43

    Article  CAS  Google Scholar 

  45. Lee WJ, Kwak WC, Min SK, Lee J,C, Chae WS, Sung Y, Han SH (2008) Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochem Commun 10:1699

    Article  CAS  Google Scholar 

  46. Guan JJ, Wang HQ, Liang H, Cheng NP, Lin H, Li Q, Lia Y, Qin LZ (2015) Photodeposition synthesis of a ZnO nanoporous layer. RSC Adv 5:52998

    Article  CAS  Google Scholar 

  47. Zhang XJ, Lin SW, Liao JJ, Pan NQ, Li DH, Cao XK, Li JB (2013) Uniform deposition of water-soluble CdS quantum dots on TiO2 nanotube arrays by cyclic voltammetric electrodeposition: effectively prevent aggregation and enhance visible-light photocatalytic activity. Electrochim Acta 108:296

    Article  CAS  Google Scholar 

  48. Torresan MF, Baruzzi AM, Iglesias RA (2016) Thermal annealing of photoanodes based on CdSe Qdots sensitized TiO2. Sol Energy Mater Sol Cells 155:202

    Article  CAS  Google Scholar 

  49. Ji JN, Li HQ, Ma YL, Zheng XR, Ji HM (2015) Preparation of PbS quantum dots on TiO2 porous film by an in-situ process for Solar cells application. Integr Ferroelectr 164(1):6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities Key Project (No. XDJK2017B062), the Central Universities Student Program (No. XDJK2017D011), and National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710635009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4365 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Z., Lin, H., Xu, M. et al. Fabrication of co-doped CdSe quantum dot-sensitized TiO2 nanotubes by ultrasound-assisted method and their photoelectrochemical properties. J Appl Electrochem 48, 147–155 (2018). https://doi.org/10.1007/s10800-017-1138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1138-2

Keywords

Navigation