Skip to main content

Advertisement

Log in

Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Among existing water treatment methods for organic-containing wastewaters, advanced oxidation process, particularly electrocatalytic oxidation, is a technique allowing to reach high degradation and mineralization efficiencies. Electrodes tested for use in electrocatalytic oxidation processes contain either expensive or platinum/group metals such as Pt-, Ru-, Ir-, Pd-, or boron-doped diamond and Sb and Pb compounds which are toxic for the environment. Thereby, there is a need for environmentally friendly and less expensive electrodes. The objectives of this research were to optimize annealing temperature of Ti/Ta2O5–SnO2 electrodes, establish the working media for organic compound oxidation processes as well as check degradation, mineralization and current efficiencies for methylene blue dye oxidation. Decolorisation efficiency of 95 % was achieved in 2 h at pH = 6.5. Neutral media showed also higher efficiency towards COD decrease which was equal to 85 % after 2 h of electrolysis. The lowest energy consumption of 7.7 kWh m−3 required for 100 % decolorisation was observed for the electrodes annealed at 550 °C at pH = 2. The highest current efficiency of 10.1 % attributed to 80 % of COD reduction was obtained for the electrode annealed at 550 °C at pH = 6.5. The optimization data allow further extrapolating of electrocatalytic oxidation process on Ti/Ta2O5–SnO2 electrodes to pilot scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beck M, Walker RV (2013) On water security, sustainability, and the water-food-energy-climate nexus. Front Environ Sci Eng 7:626–639

    Article  Google Scholar 

  2. El-Shahawi M, Hamza A, Bashammakh A, Al-Saggaf W (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597

    Article  CAS  Google Scholar 

  3. Pagga U, Brown D (1986) The degradation of dyestuff: part II behaviour of dyestuff in aerobic biodegradation tests. Chemosphere 15:479–491

    Article  CAS  Google Scholar 

  4. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  5. Fan J, Zhao G, Zhao H, Chai S, Cao T (2013) Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen. Electrochim Acta 94:21–29

    Article  CAS  Google Scholar 

  6. Palma-Goyes RE, Silva-Agredo J, González I, Torres-Palma RA (2014) Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochim Acta 140:427–433

    Article  CAS  Google Scholar 

  7. El-Ghenymy A, Centellas F, Garrido JA, Rodríguez RM, Sirés I, Cabot PL, Brillas E (2014) Decolorization and mineralization of Orange G azo dye solutions byanodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors. Electrochim Acta 130:568–576

    Article  CAS  Google Scholar 

  8. Aquino JM, Rocha-Filho R, Ruotolo L, Bocchi N, Biaggio S (2014) Electrochemical degradation of a real textile wastewater using b-PbO2 and DSA® anodes. Chem Eng J 251:138–145

    Article  CAS  Google Scholar 

  9. Shao D, Liang J, Cui X, Xu H, Yan W (2014) Electrochemical oxidation of lignin by two typical electrodes: Ti/Sb–SnO2 and Ti/PbO2. Chem Eng J 244:288–295

    Article  CAS  Google Scholar 

  10. Da Silva L, Franco D, De Faria L, Boodts J (2004) Surface, kineticsand electrocatalytic properties of Ti/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production. Electrochim Acta 49:3977–3988

    Article  Google Scholar 

  11. Xu L, Xin Y, Wang J (2009) A comparative study on IrO2–Ta2O5coated titanium electrodes prepared with different methods. Electrochim Acta 54:1820–1825

    Article  CAS  Google Scholar 

  12. Kong J, Shi S, Zhu X, Ni J (2007) Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb–SnO2 electrodes in the oxidation of 4-chlorophenol. J. Environ. Sci. 19:1380–1386

    Article  CAS  Google Scholar 

  13. Adams B, Tian M, Chen A (2009) Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochim Acta 54:1491–1498

    Article  CAS  Google Scholar 

  14. Yue L, Wang L, Shi F, Guo J, Yang J, Lian J, Luo X (2015) Application of response surface methodology to the decolorization by the electrochemical process using FePMo12O40 catalyst. J Ind Eng Chem 21:971–979

    Article  CAS  Google Scholar 

  15. Zhou M, Särkkä H, Sillanpää M (2011) A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes. Sep Purif Technol 78:290–297

    Article  CAS  Google Scholar 

  16. García-Cruz L, Sáez A, Ania CO, Solla-Gullón J, Thiemann T, Iniesta J, Montiel V (2014) Electrocatalytic activity of Ni-doped nanoporous carbons in the electrooxidation of propargyl alcohol. Carbon 73:291–302

    Article  Google Scholar 

  17. Gan T, Hu C, Chen Z, Hu S (2011) Novel electrocatalytic system for the oxidation of methyl jasmonate based on layer-by-layer assembling of montmorillonite and phosphotungstic acid nanohybrid on graphite electrode. Electrochim Acta 56:4512–4517

    Article  CAS  Google Scholar 

  18. Zhao Y, Li C, Zhao W, Du Q, Chi B, Sun J, Chai Z, Wang X (2013) Electrocatalytic oxidation of ascorbic acid on a lithium-doped tantalum oxide film coated electrode. Electrochim Acta 107:52–58

    Article  CAS  Google Scholar 

  19. Wang Y, Liu Q, Qi Q, Ding J, Gao X, Zhang Y, Sun Y (2013) Electrocatalytic oxidation and detection of N-acetylcysteine based onmagnetite/reduced graphene oxide composite-modified glassy carbon electrode. Electrochim Acta 111:31–40

    Article  CAS  Google Scholar 

  20. Ghonim A, El-Anadouli B, Saleh M (2013) Electrocatalytic glucose oxidation on electrochemically oxidized glassy carbon modified with nickel oxide nanoparticles. Electrochim Acta 114:713–719

    Article  CAS  Google Scholar 

  21. Kim J, Lee J, Tak Y (2009) Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation. J Power Sources 192:674–678

    Article  CAS  Google Scholar 

  22. Shestakova M, Bonete P, Gómez R, Sillanpää M, Tang WZ (2014) Novel Ti-Ta2O5–SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics. Electrochim Acta 120:302–307

    Article  CAS  Google Scholar 

  23. Comninellis C, Vercesi G (1991) Problems in DSA® coating deposition by thermal decomposition. J Appl Electrochem 21:136–142

    Article  CAS  Google Scholar 

  24. Martínez-Hutile C, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B-Environ 87:105–145

    Article  Google Scholar 

  25. Greenwood N, Earnshaw A (1997) Chemistry of the Elements, 2nd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  26. Barsan MM, Pinto EM, Florescu M, Brett CMA (2009) Development and characterization of a new carbon composite electrode. Anal Chim Acta 635:71–78

    Article  CAS  Google Scholar 

  27. Gu BK, Ismail YA, Spinks GM, Kim SI, So I, Kim SJ (2009) A linear actuation of polymeric nanofibrous bundle for artificial muscles. Chem Mater 21:511–515

    Article  CAS  Google Scholar 

  28. Rivero EP, Rivera FF, Cruz-Díaz MR, Mayen E, González I (2012) Numerical simulation of mass transport in a filter press type electrochemical reactor FM01-LC: comparison of predicted and experimental mass transfer coefficient. Chem Eng Res Des 90:1969–1978

    Article  CAS  Google Scholar 

  29. Ameur ZO, Husein MM (2013) Electrochemical behavior of potassium ferricyanide in aqueous and (w/o) microemulsion systems in the presence of dispersed nickel nanoparticles. Sep Sci Technol 48:681–689

    Article  CAS  Google Scholar 

  30. Menolasina S (2005) Electrochemical studies of Fe(CN)64-/Fe(CN)63- on gold ultramicroelectrodes varying the concentrations of KF as supporting electrolyte. Rev Téc Ing Univ Zulia 28:159–168

    CAS  Google Scholar 

  31. Trasatti S (1987) Oxide/aqueous solution interfaces, interplay of surface chemistry and electrocatalysis. Mater Chem Phys 16:157–174

    Article  CAS  Google Scholar 

  32. Toyosaki H, Kawasaki M, Tokura Y (2008) Electrical properties of Ta-doped SnO2 thin films epitaxially grown on TiO2 substrate. Appl Phys Lett. 93:132109-1–132109-3

    Google Scholar 

  33. Pletcher D, Walsh F (1990) Industrial electrochemistry. Springer Science & Business Media, New York, p 95

    Google Scholar 

  34. Shestakova M, Vinatoru M, Mason TJ, Sillanpää M (2015) Sonoelectrocatalytic decomposition of methylene blue using Ti/Ta2O5–SnO2 electrodes. Ultrason Sonochem 23:135–141

    Article  CAS  Google Scholar 

  35. Kötz R, Stucki S, Carcer B (1991) Electrochemical waste water treatment using high overvoltage anodes. Part I: physiscal and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–20

    Article  Google Scholar 

  36. Stucki S, Kötz R, Carcer B, Suter W (1991) Electrochemical waste water treatment using high overvoltage anodes. Part II: anode performance and applications. J Appl Electrochem 21:99–104

    Article  CAS  Google Scholar 

  37. Andrade L, Ruotolo L, Rocha-Filho R, Bocchi N, Biaggio S, Iniesta J, García-Garcia V, Montiel V (2007) On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater. Chemosphere 66:2035–2043

    Article  CAS  Google Scholar 

  38. López-Grimau V, Gutiérrez M (2006) Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere 62:106–112

    Article  Google Scholar 

  39. Cameselle C, Pazos M, Sanromán M (2005) Selection of an electrolyte to enhance the electrochemical decolourisation of indigo. Optimisation and scale-up. Chemosphere 60:1080–1086

    Article  CAS  Google Scholar 

  40. Andrade L, Rocha-Filho R, Bocchi N, Biaggio S, Iniesta J, García-Garcia V, Montiel V (2008) Degradation of phenol using Co- and Co, F-doped PbO2 anodes in electrochemical filter-press cells. J Hazard Mater 153:252–260

    Article  CAS  Google Scholar 

  41. Rajkumar D, Kim J, Palanivelu K (2005) Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment. Chem Eng Technol 28:98–105

    Article  CAS  Google Scholar 

  42. Yavuz Y, Koparal A (2006) Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. J Hazard Mater 136:296–302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Maj and Tor Nessling Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Shestakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, M., Graves, J., Sitarz, M. et al. Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue. J Appl Electrochem 46, 349–358 (2016). https://doi.org/10.1007/s10800-016-0925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0925-5

Keywords

Navigation