Skip to main content
Log in

Cathodic polarization effect on the electro-Fenton regeneration of activated carbon

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The regeneration of dye-adsorbed activated carbon (AC) using an electro-Fenton approach was studied and compared with typical regeneration methodologies (thermal, solvent extraction, and Fenton). The cathodic polarization effect of the electro-Fenton process on the AC surface was compared based on the textural and structural properties surface via physicochemical characterization techniques. The total organic carbon decay and color removal of a dye-contaminated model solution were also studied using the different methodologies, and several regeneration cycles were employed for each methodology in order to assess the regeneration efficiency and correlate it with AC structural changes. The results show that the electrochemical process is the best method to regenerate AC because it maximizes the adsorption efficiency (approximately 80–90 %) compared to other methods of regeneration (<20 %) after 10 working cycles. These results led us to conclude that cathodic polarization regenerates the AC more efficiently than conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Derbyshire FJM, Andrews R, Rao A, Martin-Gullon I, Grulke E (2001) Carbon materials in environmental applications. In: Radovic LR (ed) Chemistry and physics of carbon, vol 27. Marcel Dekke, New York

    Google Scholar 

  2. Roskill (2008) Metals and minerals reports. The economics of activated carbon, 8th edn. Roskill, London

  3. Lee DH (2005) Method and apparatus for treating high concentration organic wastewater using Fe2O3 or/and Fe3O4 as an iron oxide reaction catalyst. Korea Patent

  4. Álvarez PM, Beltrán FJ, Gómez-Serrano V, Jaramillo J, Rodríguez EM (2004) Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Res 38(8):2155–2165. doi:10.1016/j.watres.2004.01.030

    Article  Google Scholar 

  5. Maroto-Valer MM, Dranca I, Clifford D, Lupascu T, Nastas R, Leon y Leon CA (2006) Thermal regeneration of activated carbons saturated with ortho- and meta-chlorophenols. Thermochim Acta 444(2):148–156. doi:10.1016/j.tca.2006.03.004

    Article  CAS  Google Scholar 

  6. Castillejos-López E, Nevskaia DM, Muñoz V, Guerrero-Ruiz A (2008) On the interactions of phenol, aniline and p-nitrophenol on activated carbon surfaces as detected by TPD. Carbon 46(6):870–875. doi:10.1016/j.carbon.2008.02.007

    Article  Google Scholar 

  7. Ania CO, Menéndez JA, Parra JB, Pis JJ (2004) Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon 42(7):1383–1387. doi:10.1016/j.carbon.2004.01.010

    Article  CAS  Google Scholar 

  8. Ania CO, Parra JB, Pevida C, Arenillas A, Rubiera F, Pis JJ (2005) Pyrolysis of activated carbons exhausted with organic compounds. J Anal Appl Pyrol 74(1–2):518–524. doi:10.1016/j.jaap.2004.10.008

    Article  CAS  Google Scholar 

  9. Özkaya B (2006) Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J Hazard Mater 129(1–3):158–163. doi:10.1016/j.jhazmat.2005.08.025

    Article  Google Scholar 

  10. Cañizares P, Lobato J, García-Gómez J, Rodrigo MA (2004) Combined adsorption and electrochemical processes for the treatment of acidic aqueous phenol wastes. Journal of Applied Electrochemistry 34(1):111–117. doi:10.1023/B:JACH.0000005607.37738.71

    Article  Google Scholar 

  11. GarcÍA-OtÓN M, Montilla F, Lillo-RÓDenas MA, MorallÓN E, VÁZquez J (2005) Electrochemical regeneration of activated carbon saturated with toluene. Journal of Applied Electrochemistry 35(3):319–325. doi:10.1007/s10800-004-7470-3

    Article  Google Scholar 

  12. Zhang H (2002) Regeneration of exhausted activated carbon by electrochemical method. Chem Eng J 85(1):81–85. doi:10.1016/S1385-8947(01)00176-0

    Article  CAS  Google Scholar 

  13. Zhang G, Wang S, Liu Z (2003) Ultrasonic regeneration of granular activated carbon. Environ Eng Sci 20(1):57–64. doi:10.1089/109287503762457581

    Article  Google Scholar 

  14. Zhang H, Ye L, Zhong H (2002) Regeneration of phenol-saturated activated carbon in an electrochemical reactor. J Chem Technol Biotechnol 77(11):1246–1250. doi:10.1002/jctb.699

    Article  CAS  Google Scholar 

  15. San Miguel G, Lambert SD, Graham NJD (2001) The regeneration of field-spent granular-activated carbons. Water Res 35(11):2740–2748. doi:10.1016/S0043-1354(00)00549-2

    Article  CAS  Google Scholar 

  16. Nevskaia DM, Guerrero-Ruiz A (2001) Comparative study of the adsorption from aqueous solutions and the desorption of phenol and nonylphenol substrates on activated carbons. J Colloid Interface Sci 234(2):316–321. doi:10.1006/jcis.2000.7300

    Article  CAS  Google Scholar 

  17. Schweiger TAJ, LeVan MD (1993) Steam regeneration of solvent adsorbers. Ind Eng Chem Res 32(10):2418–2429. doi:10.1021/ie00022a027

    Article  CAS  Google Scholar 

  18. Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amorós D, Morallón E (2010) Comparison among chemical, thermal, and electrochemical regeneration of phenol-saturated activated carbon†. Energy Fuels 24(6):3366–3372. doi:10.1021/ef901510c

    Article  CAS  Google Scholar 

  19. CnT Muranaka, Julcour C, Wilhelm A-M, Delmas H, Nascimento CAO (2009) Regeneration of activated carbon by (photo)-Fenton oxidation. Ind Eng Chem Res 49(3):989–995. doi:10.1021/ie900675d

    Google Scholar 

  20. El-Ghenymy A, Rodríguez RM, Arias C, Centellas F, Garrido JA, Cabot PL, Brillas E (2013) Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an air-diffusion cathode. J Electroanal Chem 701:7–13. doi:10.1016/j.jelechem.2013.04.027

    Article  CAS  Google Scholar 

  21. El-Ghenymy A, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2013) Mineralization of sulfanilamide by electro-Fenton and solar photoelectro-Fenton in a pre-pilot plant with a Pt/air-diffusion cell. Chemosphere 91(9):1324–1331. doi:10.1016/j.chemosphere.2013.03.005

    Article  CAS  Google Scholar 

  22. Peralta-Hernández JM, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2006) In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology. Water Res 40(9):1754–1762. doi:10.1016/j.watres.2006.03.004

    Article  Google Scholar 

  23. Peralta-Hernández JM, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2008) Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution. Dyes Pigm 76(3):656–662. doi:10.1016/j.dyepig.2007.01.001

    Article  Google Scholar 

  24. Kim T-H, Park C, Shin E-B, Kirm S (2003) Effects of Cl-based chemical coagulants on electrochemical oxidation of textile wastewater. Desalination 155(1):59–65. doi:10.1016/S0011-9164(03)00239-X

    Article  CAS  Google Scholar 

  25. Garcia-Segura S, El-Ghenymy A, Centellas F, Rodríguez RM, Arias C, Garrido JA, Cabot PL, Brillas E (2012) Comparative degradation of the diazo dye Direct Yellow 4 by electro-Fenton, photoelectro-Fenton and photo-assisted electro-Fenton. J Electroanal Chem 681:36–43. doi:10.1016/j.jelechem.2012.06.002

    Article  CAS  Google Scholar 

  26. Bañuelos JA, Rodríguez FJ, Manríquez Rocha J, Bustos E, Rodríguez A, Cruz JC, Arriaga LG, Godínez LA (2013) Novel electro-Fenton approach for regeneration of activated carbon. Environ Sci Technol 47(14):7927–7933. doi:10.1021/es401320e

    Article  Google Scholar 

  27. Magne P, Walker PL Jr (1986) Phenol adsorption on activated carbons: application to the regeneration of activated carbons polluted with phenol. Carbon 24(2):101–107. doi:10.1016/0008-6223(86)90102-8

    Article  CAS  Google Scholar 

  28. Ferro-García MA, Utrera-Hidalgo E, Rivera-Utrilla J, Moreno-Castilla C, Joly JP (1993) Regeneration of activated carbons exhausted with chlorophenols. Carbon 31(6):857–863. doi:10.1016/0008-6223(93)90185-D

    Article  Google Scholar 

  29. Stavitskaya SS, Goba VE, Tsyba NN (2002) Comparison of various procedures for regeneration of activated carbons used for recuperation of ethyl acetate. Russ J Appl Chem 75(12):1956–1959. doi:10.1023/A:1023387315156

    Article  CAS  Google Scholar 

  30. Jonathan Ramírez LAG, Méndez M, Meas Y, Rodríguez FJ (2010) Heterogeneous photo-electro-Fenton process using different iron supporting materials. Journal of Applied Electrochemistry 40(10):1729–1736

    Article  Google Scholar 

  31. Bañuelos JA, El-Ghenymy A, Rodríguez FJ, Manríquez J, Bustos E, Rodríguez A, Brillas E, Godínez LA (2014) Study of an air diffusion activated carbon packed electrode for an electro-fenton wastewater treatment. Electrochim Acta 140:412–418. doi:10.1016/j.electacta.2014.05.078

    Article  Google Scholar 

  32. Otsuka M (2004) Comparative particle size determination of phenacetin bulk powder by using Kubelka-Munk theory and principal component regression analysis based on near-infrared spectroscopy. Powder Technol 141(3):244–250. doi:10.1016/j.powtec.2004.01.025

    Article  CAS  Google Scholar 

  33. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J Anal Appl Pyrol 89(2):143–151. doi:10.1016/j.jaap.2010.07.006

    Article  CAS  Google Scholar 

  34. Biniak S, Świątkowski A, Pakuła M, Sankowska M, Kuśmierek K, Trykowski G (2013) Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes. Carbon 51:301–312. doi:10.1016/j.carbon.2012.08.057

    Article  CAS  Google Scholar 

  35. Terzyk AP (2001) The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids Surf A 177(1):23–45. doi:10.1016/S0927-7757(00)00594-X

    Article  CAS  Google Scholar 

  36. Guzmán C, Orozco G, Verde Y, Jiménez S, Godínez LA, Juaristi E, Bustos E (2009) Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles–dopamine. Electrochim Acta 54(6):1728–1732. doi:10.1016/j.electacta.2008.09.072

    Article  Google Scholar 

  37. Bustos E, Godínez LA, Rangel-Reyes G, Juaristi E (2009) Chiral recognition of alanine across modified carbon electrodes with 3,4-dihydroxyphenylalanine. Electrochim Acta 54(26):6445–6450. doi:10.1016/j.electacta.2009.05.083

    Article  CAS  Google Scholar 

  38. Armendariz G, Manríquez J, Santamaría A, Herrera-Gómez A, Bustos E (2014) Electrochemical detecton of dopamine using graphite electrodes modified with PAMAM G4.0-64 OH dendrimers in synthetic cerebrospinal fluid. In: Osma IMSJF (ed) Biosensors: recent advances and mathematical challenges. OmniaScience, Barcelona, pp 129–140

    Chapter  Google Scholar 

  39. Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2(5):557–563. doi:10.1021/cm00011a018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to CONACyT (project SEP-CONACyT-106590) and the ECS and the Belinda and Bill Gates Foundation for their financial support of this work. We also thank UAQ for the BET measurements and Dr. Eunice de Anda and CINVESTAV for the FTIR Spectra reported in this work.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Godínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bañuelos, J.A., García-Rodríguez, O., Rodríguez-Valadez, F.J. et al. Cathodic polarization effect on the electro-Fenton regeneration of activated carbon. J Appl Electrochem 45, 523–531 (2015). https://doi.org/10.1007/s10800-015-0815-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0815-2

Keywords

Navigation